

NLP representations from a perspective of human cognition Allyson Ettinger CLSP, Johns Hopkins University

Nov 18 2019

The big goal

- NLP is trying to solve "natural language understanding"
- This can be defined in various ways
- Ideal: achieve human capacity to extract, represent, and deploy information from language input

How to assess "understanding"?

- How do we assess the *information* that a system has captured?
- Downstream tasks?

How to assess "understanding"?

- Current challenge in NLP: powerful pre-trained models are beating our current benchmarks
- But no one really thinks we have mastered "understanding"
- This is a mismatch that needs to be addressed
- Our dominant question: how can we better understand and more effectively evaluate what our models actually "know" about language

Using human cognition as a lens

- We're going to examine this from the perspective of human cognition
- What do we need humans for? Planes don't flap their wings ...
- Concept of understanding is defined based on humans
- Essentially all NLP benchmarks use human judgments at some level

What about humans to aspire to

- Certain levels of human understanding make sense for us to emulate with our systems specifically, endpoint of comprehension
- Other aspects (errors, early stages) not clear we want to emulate
- But sometimes our models do resemble these other aspects
- Worth identifying, thinking about why this is happening, and determining what needs to change to target the endpoint of comprehension

Outline

- 1. Assessing systematic composition in sentence encoders
- 2. Simpler models as approximation of real-time predictive response
- 3. Evaluating pre-trained LMs against human predictive responses

Outline

- **1.** Assessing systematic composition in sentence encoders
- 2. Simpler models as approximation of real-time predictive response
- 3. Evaluating pre-trained LMs against human predictive responses

Learning sentence representations

The turquoise giraffe recited the sonnet but did not forgive the flight attendant

How are we doing at meaning composition?

The turquoise giraffe recited the sonnet but did not forgive the flight attendant

Probing tasks

Is my sentence encoder capturing word content?

Probing tasks

- Ettinger et al. (2016), Adi et al. (2016)
- Dates back over a decade in neuroscience: multivariate pattern analysis, Haxby et al. (2001)

Our work

- Target aspects of sentence meaning relevant to composition
- Additional measures to control tests and increase confidence in conclusions

Control 1:

Control 1: sentence generation

"professor = AGENT of *help"*

The professor helped the student

The professor is not helping the executive

The lawyer is being helped by the professor

The professor that the girl likes helped the man

Control 2:

Control 2: Bag-of-words check

Control 2: Bag-of-words check

• What information do we know that humans extract systematically?

Target information types

• Semantic role (who did what to whom?)

• Negation (what happened and what didn't?)

Semantic role: is x agent of y?

SENT: The waitress who served the customer is sleeping X-PROBE: waitress Y-PROBE: serve

LABEL: +1

SENT: The waitress who served the customer is sleeping X-PROBE: customer Y-PROBE: sleep LABEL: -1

Negation: did y happen?

SENT: The waitress is serving the customer who is **not** actually **sleeping Y-PROBE:** sleep LABEL: -1

SENT: The waitress is **not** actually serving the customer who is **sleeping Y-PROBE:** sleep **LABEL:** +1

MLP classifier

Sentence embedding models

- BOW: Bag-of-words vector averaging
- SDAE: Sequential Denoising Autoencoder (Hill et al., 2015)
- ST-UNI, ST-BI: SkipThought uniskip and biskip (Kiros et al., 2015)
- InferSent (Conneau et al. 2017)

• 2400 dimensions

Sanity check: surface tasks

word content

• given probe *x*: is *x* present in sentence?

• word order

• given probes x, y: does x precede y in sentence?

Adi et al., 2016

CONTENT ORDER ROLE NEG

	CONTENT	ORDER	ROLE	NEG
BOW	100.0	55.0	51.3	50.9

	CONTENT	ORDER	ROLE	NEG
BOW	100.0	55.0	51.3	50.9
SDAE	100.0	92.9		
ST-UNI	100.0	93.2		
ST-BI	96.6	88.7		
InferSent	100.0	86.4		

	CONTENT	ORDER	ROLE	NEG
BOW	100.0	55.0	51.3	50.9
SDAE	100.0	92.9	63.7	99.0
ST-UNI	100.0	93.2	62.3	96.6
ST-BI	96.6	88.7	63.2	74.7
InferSent	100.0	86.4	50.1	97.2

	CONTENT	ORDER	ROLE	NEG
BOW	100.0	55.0	51.3	50.9
SDAE	100.0	92.9	63.7	99.0
ST-UNI	100.0	93.2	62.3	96.6
ST-BI	96.6	88.7	63.2	74.7
InferSent	100.0	86.4	50.1	97.2

	CONTENT	ORDER	ROLE	NEG
BOW	100.0	55.0	51.3	50.9
SDAE	100.0	92.9	63.7	99.0
ST-UNI	100.0	93.2	62.3	96.6
ST-BI	96.6	88.7	63.2	74.7
InferSent	100.0	86.4	50.1	97.2

	CONTENT	ORDER	ROLE	NEG
BOW	100.0	55.0	51.3	50.9
SDAE	100.0	92.9	63.7	99.0
ST-UNI	100.0	93.2	62.3	96.6
ST-BI	96.6	88.7	63.2	74.7
InferSent	100.0	86.4	50.1	97.2

The waitress is **not** actually **serving** the customer who is sleeping

	CONTENT	ORDER	ROLE	NEG
BOW	100.0	55.0	51.3	50.9
SDAE	100.0	92.9	63.7	99.0
ST-UNI	100.0	93.2	62.3	96.6
ST-BI	96.6	88.7	63.2	74.7
InferSent	100.0	86.4	50.1	97.2

The waitress is **not** actually **serving** the customer who is sleeping

the waitress is not serving the customer | customer the serving not is waitress the

	CONTENT	ORDER	ROLE	NEG
BOW	100.0	55.0	51.3	50.9
SDAE	100.0	92.9	63.7	99.0
ST-UNI	100.0	93.2	62.3	96.6
ST-BI	96.6	88.7	63.2	74.7
InferSent	100.0	86.4	50.1	97.2

	CONTENT	ORDER	ROLE	NEG
BOW	100.0	55.0	51.3	50.9
SDAE	100.0	92.9	63.7	99.0
ST-UNI	100.0	93.2	62.3	96.6
ST-BI	96.6	88.7	63.2	74.7
InferSent	100.0	86.4	50.1	97.2

	CONTENT	ORDER	ROLE	NEG
BOW	100.0	55.0	51.3	50.9

Sequence models appear to identify linking of negation to next verb

Work to be done on semantic roles

InferSent	100.0	86.4	50.1	97.2
Update from Sesame Street

- Davis Yoshida (TTIC) tested semantic role tasks on ELMo, BERT, GPT
- Tested various configurations: CLS token, average of WordPiece tokens – below reports best performance
- ELMo (68.60%)
- BERT (63.00%)
- GPT (61.4%)

Outline

- 1. Assessing systematic composition in sentence encoders
- 2. Simpler models as approximation of real-time predictive response
- 3. Evaluating pre-trained LMs against human predictive responses

Beyond the endpoint

- Part I also emphasized that BOW can't capture sentence meaning, so a model that resembles BOW can't be doing understanding
- But there are other stages of comprehension that might actually look a bit like this

Measuring human brain activity (EEG)

N400 component

I take coffee with cream and _

(Kutas & Hillyard, 1980)

Cloze probability

I take coffee with cream and _____

Cloze probability = 0

Cloze probability = .6

The restaurant owner forgot which **customer** the **waitress** had _____

The restaurant owner forgot which **customer** the **waitress** had _____

The restaurant owner forgot which **customer** the **waitress** had ______ ... **served**

The restaurant owner forgot which **waitress** the **customer** had _____

The restaurant owner forgot which **customer** the **waitress** had ______ ... **served**

The restaurant owner forgot which **waitress** the **customer** had _____

The restaurant owner forgot which **customer** the **waitress** had ______ ... **served**

The restaurant owner forgot which **waitress** the **customer** had _____

The restaurant owner forgot which customer the waitress had ______....*served*

The restaurant owner forgot which **waitress** the **customer** had _____

N400

- Probably reflects most efficient available information for predicting upcoming words
- BOW-type representation may be a common go-to for this purpose

He caught the pass and scored another touchdown. There was nothing he enjoyed more than a good game of _____

... football

expected

He caught the pass and scored another touchdown. There was nothing he enjoyed more than a good game of _____

... football

... baseball

expected

within-category

He caught the pass and scored another touchdown. There was nothing he enjoyed more than a good game of _____

... football

... baseball

... monopoly

expected

within-category

between-category

He caught the pass and scored another touchdown. There was nothing he enjoyed more than a good game of _____

----- Within Category Violations Between Category Violations

He caught the pass and scored another touchdown. There was nothing he enjoyed more than a good game of _____

----- Expected Exemplars ----- Within Category Violations Between Category Violations

He caught the pass and scored another touchdown. There was nothing he enjoyed more than a good game of _____

----- Expected Exemplars ----- Within Category Violations Between Category Violations

He caught the pass and scored another touchdown. There was nothing he enjoyed more than a good game of _____

----- Expected Exemplars ----- Within Category Violations Between Category Violations

----- Expected Exemplars ----- Within Category Violations Between Category Violations

Federmeier & Kutas account

Federmeier & Kutas account

Federmeier & Kutas account

Alternative account

Alternative account

He <u>caught</u> the <u>pass</u> and <u>scored</u> another <u>touchdown</u>. There was nothing he enjoyed more than a good <u>game</u> of _____

Alternative account

He <u>caught</u> the <u>pass</u> and <u>scored</u> another <u>touchdown</u>. There was nothing he enjoyed more than a good <u>game</u> of _____

BOW averaging simulation

× Expected Exemplars ▼ Within Category Violations ■ Between Category Violations

×

Interim takeaways

- Cognitive scientists: alternative explanation for observed result (made possible by availability of word embeddings)
- Our purposes: BOW model may not amount to comprehension but it may align with other aspects of human processing
- Understanding which part of human processing we are approximating can help to improve in desired directions

Outline

- 1. Assessing systematic composition in sentence encoders
- 2. Simpler models as approximation of real-time predictive response
- 3. Evaluating pre-trained LMs against human predictive responses

Pre-trained language models

- Impressive generalization across large number of tasks
- What kinds of generalizable linguistic competence do these models acquire during LM pre-training?
- Is it "understanding"? Is it shallower?
BERT

(Devlin et al 2018)

Probe representations?

- We could use probing tasks to probe the representations that pretrained models produces
- Few a priori expectations
- Should the CLS token represent all the sentence information? Should the average of token representations? At which layers?

Test word predictions

- Alternative: test pre-trained BERT in its most natural setting of predicting words in context
- What information is BERT sensitive to when making word predictions in context?

Psycholinguistic tests

- Designed to draw conclusions based on predictive responses in context
- Controlled to ask targeted questions about predictive mechanisms

N400/cloze divergence

- Choose psycholinguistic tests for which the N400 and cloze response diverge
- N400 predictive response shows apparent insensitivity to certain useful information for prediction
- Will BERT show similar insensitivities, or will it be able to make use of the higher-level predictive information that cloze reflects?

Psycholinguistic diagnostics

- Adapt three psycholinguistic datasets
- Three types of tests for each:
- 1. Word prediction accuracy—how well can the model use the relevant information to guide word predictions
- 2. Sensitivity tests—how well can the model distinguish between completions that the N400 has showed insensitivity on
- 3. Qualitative analysis—what do BERT's top predictions tell us about the information it has access to?

Datasets

- CPRAG-102: commonsense/pragmatic inference
- ROLE-88: event knowledge and semantic roles
- NEG-136: negation

Datasets

- CPRAG-102: commonsense/pragmatic inference
- ROLE-88: event knowledge and semantic roles
- NEG-136: negation

He caught the pass and scored another touchdown. There was nothing he enjoyed more than a good game of _____

He complained that after she kissed him, he couldn't get the red color off his face. He finally just asked her to stop wearing that _____

Prediction accuracy test

- Need to use commonsense inference to discern what is being described in first sentence
- Need to use pragmatic inference (along with normal syntactic/semantic information) to determine how the second sentence relates to the first

He caught the pass and scored another touchdown. There was nothing he enjoyed more than a good game of _____

He complained that after she kissed him, he couldn't get the red color off his face. He finally just asked her to stop wearing that _____

Sensitivity test

Can BERT distinguish between completions with semantic features in common?

He caught the pass and scored another touchdown. There was nothing he enjoyed more than a good game of _____

... football

Federmeier & Kutas (1999)

He caught the pass and scored another touchdown. There was nothing he enjoyed more than a good game of _____

... football ... baseball

He caught the pass and scored another touchdown. There was nothing he enjoyed more than a good game of _____

... football ... baseball ... monopoly

Federmeier & Kutas (1999)

Datasets

- CPRAG-102: commonsense/pragmatic inference
- ROLE-88: event knowledge and semantic roles
- NEG-136: negation

The restaurant owner forgot which **customer** the **waitress** had _____

The restaurant owner forgot which **waitress** the **customer** had _____

Original study: Chow et al., 2015

Prediction accuracy test

 Need to use semantic role information and knowledge about typical events in order to make accurate predictions

The restaurant owner forgot which **customer** the **waitress** had _____

The restaurant owner forgot which **waitress** the **customer** had _____

Original study: Chow et al., 2015

Sensitivity test

• Will BERT reliably prefer continuations in the appropriate contexts rather than the role-reversed contexts?

The restaurant owner forgot which **customer** the **waitress** had _____

The restaurant owner forgot which **customer** the **waitress** had _____ ... **served**

The restaurant owner forgot which **waitress** the **customer** had _____

Chow et al., 2015

The restaurant owner forgot which **customer** the **waitress** had _____ ... **served**

The restaurant owner forgot which **waitress** the **customer** had _____

Chow et al., 2015

Datasets

- CPRAG-102: commonsense/pragmatic inference
- ROLE-88: event knowledge and semantic roles
- NEG-136: negation

A robin is a _____

A robin is a _____

A robin is a _____ ... **bird**

A robin is not a _____

A robin is a _____ ... **bird**

A robin is not a _____ ... **bird**

A robin is a _____ ... **bird**

A robin is not a _____ ... **bird**

Prediction accuracy

- This test doesn't make sense in negated contexts, so test accuracy only on affirmative contexts
- Accurate predictions here require access to hypernym information

Sensitivity test

- This is where the test of negation comes in
- Can BERT prefer true continuations to false continuations, with and without negation?

He caught the pass and scored another touchdown. There was nothing he enjoyed more than a good game of

He caught the pass and scored another touchdown. There was nothing he enjoyed more than a good game of [MASK]

He caught the pass and scored another touchdown. There was nothing he enjoyed more than a good game of [MASK]

Extract BERT word predictions on [MASK] token, as in pre-training

- BERT_{Base} 12 layers, hidden layer size 768 dimensions, 12 selfattention heads. Total parameters 110M
- BERT_{Large} 24 layers, 1024 dim hidden size, 16 self-attention heads. Total parameters 340M

Results: CPRAG accuracy test

He caught the pass and scored another touchdown. There was nothing he enjoyed more than a good game of [MASK]

football in top k BERT predictions ?
Results: CPRAG accuracy test

	Orig
$BERT_{BASE} \ k = 1$	23.5
$\operatorname{BERT}_{\operatorname{LARGE}} k = 1$	35.3
$\text{BERT}_{\text{BASE}} k = 5$	52.9
$\text{BERT}_{\text{LARGE}} k = 5$	52.9

Results: CPRAG accuracy test

	Orig	Shuf	Trunc
$BERT_{BASE} \ k = 1$	23.5	14.1 ± 3.1	14.7
$\text{BERT}_{\text{LARGE}} k = 1$	35.3	17.4 ± 3.5	17.6
$\text{BERT}_{\text{BASE}} k = 5$	52.9	36.1 ± 2.8	35.3
$\text{BERT}_{\text{LARGE}} k = 5$	52.9	39.2 ± 3.9	32.4

Results: CPRAG accuracy test

	Orig	Shuf	Trunc	Shuf + Trunc
$BERT_{BASE} \ k = 1$	23.5	14.1 ± 3.1	14.7	8.1 ± 3.4
$\text{BERT}_{\text{LARGE}} k = 1$	35.3	17.4 ± 3.5	17.6	10.0 ± 3.0
$BERT_{BASE} k = 5$	52.9	36.1 ± 2.8	35.3	22.1 ± 3.2
$\text{BERT}_{\text{LARGE}} k = 5$	52.9	39.2 ± 3.9	32.4	21.3 ± 3.7

Results: CPRAG sensitivity test

He caught the pass and scored another touchdown. There was nothing he enjoyed more than a good game of [MASK]

football >
baseball and monopoly ?

Results: CPRAG sensitivity test

	Prefer good	w/.01 thresh
BERTBASE	73.5	44.1
BERTLARGE	79.4	58.8

CPRAG qualitative analysis

Context	BERT _{LARGE} predictions
Pablo wanted to cut the lumber he had bought to make some shelves. He asked his neighbor if he could borrow her	car, house, room, truck, apartment
The snow had piled up on the drive so high that they couldn't get the car out. When Albert woke up, his fa-ther handed him a	note, letter, gun, blanket, newspaper
At the zoo, my sister asked if they painted the black and white stripes on the animal. I explained to her that they were natural features of a	cat, person, human, bird, species

The restaurant owner forgot which **customer** the **waitress** had [MASK] (served in top k BERT predictions?)

The restaurant owner forgot which **waitress** the **customer** had **[MASK]** (*tipped* in top k BERT predictions?)

	Orig
BERT _{BASE} $k=1$	14.8
BERT _{LARGE} $k=1$	13.6
BERT _{BASE} $k=5$	27.3
BERT _{LARGE} $k=5$	37.5

	Orig	-Obj	-Sub
BERT _{BASE} $k=1$	14.8	12.5	12.5
BERT _{LARGE} $k=1$	13.6	5.7	6.8
BERT _{BASE} $k=5$	27.3	26.1	22.7
BERT _{LARGE} $k=5$	37.5	18.2	21.6

	Orig	-Obj	-Sub	-Both
BERT _{BASE} $k=1$	14.8	12.5	12.5	9.1
BERT _{LARGE} $k=1$	13.6	5.7	6.8	4.5
BERT _{BASE} $k=5$	27.3	26.1	22.7	18.2
BERT _{LARGE} $k=5$	37.5	18.2	21.6	14.8

Results: ROLE sensitivity test

The restaurant owner forgot which **customer** the **waitress** had [MASK] served

>

The restaurant owner forgot which **waitress** the **customer** had [MASK] served

?

Results: ROLE sensitivity test

	Prefer good	w/ .01 thresh
BERTBASE	75.0	31.8
BERTLARGE	86.4	43.2

ROLE qualitative analysis

Context	BERT _{BASE} predictions	BERT _{LARGE} predictions
the camper reported which girl the	taken, killed, attacked, bitten,	attacked, killed, eaten, taken,
bear had	picked	targeted
the camper reported which bear the	taken, killed, fallen, bitten,	taken, left, entered, found,
girl had	jumped	chosen
the restaurant owner forgot which	served, hired, brought, been,	served, been, delivered, men-
customer the waitress had	taken	tioned, brought
the restaurant owner forgot which	served, been, chosen, or-	served, chosen, called, or-
waitress the customer had	dered, hired	dered, been

A robin is a [MASK] bird in top k BERT predictions ?

	Accuracy
$\mathbf{BERT}_{\mathbf{BASE}} \ k = 1$	38.9
$BERT_{LARGE} k = 1$	44.4
$BERT_{BASE} \ k = 5$	100
$\text{BERT}_{\text{LARGE}} k = 5$	100

Results: NEG sensitivity test

A robin is a [MASK] bird > tree ?

A robin is not a [MASK] tree > bird ?

Results: NEG sensitivity test

	Affirmative	Negative
BERT _{BASE}	100	0.0
BERTLARGE	100	0.0

NEG qualitative analysis

Context	BERT _{LARGE} predictions
A robin is a	bird, robin, person, hunter, pigeon
A daisy is a	daisy, rose, flower, berry, tree
A hammer is a	hammer, tool, weapon, nail, device
A hammer is an	object, instrument, axe, implement, explosive
A robin is not a	robin, bird, penguin, man, fly
A daisy is not a	daisy, rose, flower, lily, cherry
A hammer is not a	hammer, weapon, tool, gun, rock
A hammer is not an	object, instrument, axe, animal, artifact

- Decent on sensitivity to role reversal and differences within semantic category – but seemingly weaker sensitivity than cloze
- Great with hypernyms, determiners, grammaticality
- Struggles with challenging inference and event-based prediction
- Clear insensitivity to contextual impacts of negation

Discussion

- Many of these results give general indication that these pre-trained models have a way to go to incorporate human inference
- Negation result is more striking and starker
- Not surprising, ultimately, given LM training but possibly means that LM training isn't suited for learning negation
- What other aspects of comprehension have this property?

Outline

- 1. Assessing systematic composition in sentence encoders
- 2. Simpler models as approximation of real-time predictive response
- 3. Evaluating pre-trained LMs against human predictive responses

Conclusions

- What we want to be able to do is capture the endpoint of comprehension
- What we're good at right now is leveraging co-occurrence statistics in a way that maximizes our ability to predict surrounding/upcoming words
- This sometimes causes our models to better resemble earlier stages of human comprehension rather than the endpoint
- Understanding what part of human processing we're capturing, and how that relates to what we do want to capture, could help us meet our goals

Thank you!

Naomi Feldman

Philip Resnik

GRF Grant DGE-1322106 NRT Grant DGE-1449815 Toyota Technological Institute at Chicago

Ahmed Elgohary