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Abstract
While sentence anomalies have been applied
periodically for testing in NLP, we have yet
to establish a picture of the precise status of
anomaly information in representations from
NLP models. In this paper we aim to fill
two primary gaps, focusing on the domain of
syntactic anomalies. First, we explore fine-
grained differences in anomaly encoding by
designing probing tasks that vary the hierar-
chical level at which anomalies occur in a sen-
tence. Second, we test not only models’ ability
to detect a given anomaly, but also the gener-
ality of the detected anomaly signal, by exam-
ining transfer between distinct anomaly types.
Results suggest that all models encode some
information supporting anomaly detection, but
detection performance varies between anoma-
lies, and only representations from more re-
cent transformer models show signs of general-
ized knowledge of anomalies. Follow-up anal-
yses support the notion that these models pick
up on a legitimate, general notion of sentence
oddity, while coarser-grained word position in-
formation is likely also a contributor to the ob-
served anomaly detection.

1 Introduction

As the NLP community works to understand what
is being learned and represented by current mod-
els, a notion that has made sporadic appearances is
that of linguistic anomaly. Analyses of language
models have often tested whether models prefer
grammatical over ungrammatical completions (e.g.
Linzen et al., 2016), while analyses of sentence
embeddings have probed for syntax and semantics
by testing detection of sentence perturbations (Con-
neau et al., 2018). Such work tends to exploit
anomaly detection as a means of studying linguis-
tic phenomena, setting aside any direct questions
about encoding of anomaly per se. However, mod-
els’ treatment of anomaly is itself a topic that raises
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important questions. After all, it is not obvious that
we should expect models to encode information
like “this sentence contains an anomaly”, nor is it
obvious which types of anomalies we might expect
models to pick up on more or less easily. Nonethe-
less, anomalies are easy to detect for humans, and
their detection is relevant for applications such as
automatic error correction (Ge et al., 2018), so it
is of value to understand how anomalies operate in
our models, and what impacts anomaly encoding.

In the present work we seek to fill this gap with
a direct examination of anomaly encoding in sen-
tence embeddings. We begin with fine-grained
testing of the impact of anomaly type, designing
probing tasks with anomalies at different levels
of syntactic hierarchy to examine whether model
representations better support detection of certain
types of anomaly. Then we examine the general-
ity of anomaly encoding by testing transfer perfor-
mance between distinct anomalies—here our ques-
tion is, to the extent that we see successful anomaly
detection, does this reflect encoding of a more gen-
eral signal indicating “this sentence contains an
anomaly”, or does it reflect encoding of simpler
cues specific to a given anomaly? We focus on syn-
tactic anomalies because the hierarchy of sentence
structure is conducive to our fine-grained anomaly
variation. (Sensitivity to syntactic anomalies has
also been studied extensively as part of the human
language capacity (Chomsky, 1957; Fodor et al.,
1996), strengthening precedent for prioritizing it.)

We apply these tests to six prominent sentence
encoders. We find that most models support non-
trivial anomaly detection, though there is sub-
stantial variation between encoders. We also ob-
serve differences between hierarchical classes of
anomaly for some encoders. When we test for
transferability of the anomaly signal, we find that
for most encoders the observed anomaly detection
shows little sign of generality—however, trans-
fer performance in BERT and RoBERTa suggests



that these more recent models may in fact pick
up on a generalized awareness of syntactic anoma-
lies. Follow-up analyses support the possibility that
these transformer-based models pick up on a legit-
imate, general notion of syntactic oddity—which
appears to coexist with coarser-grained, anomaly-
specific word order cues that also contribute to
detection performance. We make all data and code
available for further testing.1

2 Related Work

This paper builds on work analyzing linguistic
knowledge reflected in representations and out-
puts of NLP models (Tenney et al., 2019; Rogers
et al., 2020; Jawahar et al., 2019). Some work
uses tailored challenge sets associated with down-
stream tasks to test linguistic knowledge and robust-
ness (Dasgupta et al., 2018; Poliak et al., 2018a,b;
White et al., 2017; Belinkov et al., 2017b; Yang
et al., 2015; Rajpurkar et al., 2016; Jia and Liang,
2017; Rajpurkar et al., 2018). Other work has used
targeted classification-based probing to examine
encoding of specific types of linguistic information
in sentence embeddings more directly (Adi et al.,
2016; Conneau et al., 2018; Belinkov et al., 2017a;
Ettinger et al., 2016, 2018; Tenney et al., 2019;
Klafka and Ettinger, 2020). We expand on this
work by designing analyses to shed light on encod-
ing of syntactic anomaly information in sentence
embeddings.

A growing body of work has examined syntactic
sensitivity in language model outputs (Chowdhury
and Zamparelli, 2018; Futrell et al., 2019; Lakretz
et al., 2019; Marvin and Linzen, 2018; Ettinger,
2020), and our Agree-Shift task takes inspiration
from the popular number agreement task for lan-
guage models (Linzen et al., 2016; Gulordava et al.,
2018; Goldberg, 2019). Like this work, we fo-
cus on syntax in designing our tests, but we differ
from this work in focusing on model representa-
tions rather than outputs, and in our specific focus
on understanding how models encode information
about anomalies. Furthermore, as we detail below,
our Agree-Shift task differs importantly from the
LM number agreement tests, and should not be
compared directly to results from those tests.

Our work relates most closely to studies involv-
ing anomalous or erroneous sentence information
(Warstadt et al., 2019; Yin et al., 2020; Hashemi

1https://github.com/pepper-w/
syntactic_anomalies.

and Hwa, 2016). Some work investigates impacts
from random shuffling or other types of distor-
tion of input text (Pham et al., 2020; Gupta et al.,
2021) or of model pre-training text (Sinha et al.,
2021) on downstream tasks—but this work does
not investigate models’ encoding of these anoma-
lies. Warstadt et al. (2019) present and test with
the CoLA dataset for general acceptability detec-
tion, and among the probing tasks of Conneau
et al. (2018) there are three that involve analyz-
ing whether sentence embeddings can distinguish
erroneous modification to sentence inputs: SOMO,
BShift, and CoordInv. Yin et al. (2020) also gen-
erate synthetic errors based on errors from non-
native speakers, showing impacts of such errors on
downstream tasks, and briefly probing error sen-
sitivity. More recently, Li et al. (2021) conduct
anomaly detection with various anomaly types at
different layers of transformer models, using train-
ing of Gaussian models for density estimation, and
finding different types of anomaly sensitivity at
different layers. We build on this line of work in
anomaly detection with a fine-grained exploration
of models’ detection of word-content-controlled
perturbations at different levels of syntactic hierar-
chy. Our work is complementary also in exploring
generality of models’ anomaly encoding by exam-
ining transfer performance between anomalies.

3 Syntactic Anomaly Probing Tasks

To test the effects of hierarchical location of a
syntactic anomaly, we create a set of tasks based
on four different levels of sentence perturbation.
We structure all perturbations so as to keep word
content constant between original and perturbed
sentences, thus removing any potential aid from
purely lexical contrast cues. Our first three tasks
involve reordering of syntactic constituents, and
differ in hierarchical proximity of the reordered
constituents: the first switches constituents of a
noun phrase, the second switches constituents of
a verb phrase, and the third switches constituents
that only share the clause. Our fourth task tests sen-
sitivity to perturbation of morphological number
agreement, echoing existing work testing agree-
ment in language models (Linzen et al., 2016).

3.1 Mod-Noun: Detecting modifier/noun
reordering

Our first task tests sensitivity to anomalies in
modifier-noun structure, generating anomalous sen-
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tences by swapping the positions of nouns and their
accompanying modifiers, as below:

A man wearing a yellow scarf rides a bike. →
A man wearing a scarf yellow rides a bike.

We call this perturbation Mod-Noun. Any article
determiner of the noun phrase remains unperturbed.

3.2 Verb-Ob: Detecting verb/object
reordering

Our second task tests sensitivity to anomalies in En-
glish subject-verb-object (SVO) sentence structure
by swapping the positions of verbs and their objects
(SVO → SOV). To generate perturbed sentences
for this task, we take sentences with a subject-verb-
object construction, and reorder the verb (or verb
phrase) and the object, as in the example below:

A man wearing a yellow scarf rides a bike. →
A man wearing a yellow scarf a bike rides.

We refer to this perturbation as Verb-Ob. Note
that Verb-Ob and Mod-Noun are superficially simi-
lar tasks in that they both reorder sequentially con-
secutive constituents. However, importantly, they
differ in the hierarchical level of the swap.

3.3 SubN-ObN: Detecting subject/object
reordering

Our third task tests sensitivity to anomalies in
subject-verb-object relationships, creating pertur-
bations by swapping the positions of subject and
object nouns in a sentence. For this task, we gener-
ate the data by swapping the two head nouns of the
subject and the object, as below:

A man wearing a yellow scarf rides a bike. →
A bike wearing a yellow scarf rides a man.

We refer to this perturbation as SubN-ObN. We
target subject-verb-object structures directly under
the root of the syntactic parse, meaning that only
one modification is made per sentence for this task.

Detecting the anomaly in this perturbation in-
volves sensitivity to argument structure (the way
in which subject, verb, and object should be com-
bined), along with an element of world knowledge
(knowing that a bike would not ride a man, nor
would a bike typically wear a scarf).2

2For more details about this task, please see Appendix A.7.

3.4 Agree-Shift: Detecting subject/verb
disagreement

Our fourth task tests sensitivity to anomalies in
subject-verb morphological agreement, by chang-
ing inflection on a present tense verb to create num-
ber disagreement between subject and verb:

A man wearing a yellow scarf rides a bike. →
A man wearing a yellow scarf ride a bike.

We refer to this perturbation as Agree-Shift.3

This is the only one of our tasks that involves a
slight change in the word inflection, but the word
stem remains the same—we consider this to be
consistent with holding word content constant.

4 Experiments

We generate probing datasets for each of the
anomaly tests described above. We then apply
these tasks to examine anomaly sensitivity in a
number of generic sentence encoders.4

Datasets Each of the above perturbations is used
to create a probing dataset consisting of normal
sentences and corresponding modified sentences,
labeled as normal and perturbed, respectively.
Within each probing task, each normal sentence
has a corresponding perturbed sentence, so the la-
bel sets for each task are fully balanced. Each probe
is formulated as a binary classification task. Nor-
mal sentences and their corresponding perturbed
sentences are included in the same partition of the
train/dev/test split, so for any sentence in the test
set, no version of that sentence (neither the per-
turbed form nor its original form) has been seen at
training time. We draw our normal sentences from
MultiNLI (Williams et al., 2018) (premise only).
Perturbations of those sentences are then generated
as our perturbed sentences.

3Note that while this perturbation echoes the popular LM
agreement analyses (Linzen et al., 2016; Gulordava et al.,
2018; Goldberg, 2019), the fact that we are probing sentence
embeddings for explicit detection of this anomaly is an im-
portant difference. Performance by LMs on those agreement
tasks can indicate that a model prefers a non-anomalous com-
pletion, but cannot speak to whether the model encodes any ex-
plicit/perceptible awareness that an anomaly is present/absent.
For this reason, model performance on our Agree-Shift task
should not be compared directly to performance on these
agreement probability tasks.

4Please refer to the Appendix A.5, A.6, A.7 for more
details about data generation, probing implementation, as well
as descriptions about encoders and external tasks.



Figure 1: Anomaly detection performance.

Probing We analyze sentence embeddings from
these prominent sentence encoders: InferSent (Con-
neau et al., 2017), Skip-thoughts (Kiros et al.,
2015), GenSen (Subramanian et al., 2018),
BERT (Devlin et al., 2019), and RoBERTa (Liu
et al., 2019b). The first three models are RNN-
based, while the final two are transformer-based.

To test the effectiveness of our control of word
content, we also test bag-of-words (BoW) sentence
embeddings obtained by averaging of GloVe (Pen-
nington et al., 2014) embeddings. This allows us
to verify that our probing tasks are not solvable by
simple lexical cues (c.f. Ettinger et al., 2018), thus
better isolating effects of syntactic anomalies.

We train and test classifiers on our probing tasks,
with sentence embeddings from the above encoders
as input. The classifier structure is a multilayer
perceptron (MLP) classifier with one hidden layer.5

5 Anomaly Detection Results

Fig. 1 shows anomaly detection performance for
the tested encoders. We can see first that for three
of our four tasks—all reordering tasks—our BoW
baseline performs perfectly at chance, verifying
elimination of lexical biases. BoW on the Agree-
Shift task is just above chance, reflecting (expected)
slight bias in morphological variations.

Comparing between tasks, we see that Verb-Ob
yields highest overall performance while SubN-
ObN yields the lowest. As mentioned above, a par-
ticularly informative comparison is between Verb-
Ob and Mod-Noun, which both involve swapping
sequentially adjacent content, but at different hier-

5We also train on a logistic regression (LR) classifier. LR
results are shown in the Appendix Table 4.

archical levels. We see that encoders consistently
show stronger performance on Verb-Ob than Mod-
Noun, suggesting that the broader hierarchical do-
main of Verb-Ob may indeed make anomalies more
accessible for encoding. The only anomaly that af-
fects a broader span of the sentence is SubN-ObN—
but we see that this is instead one of the most chal-
lenging tasks. We suspect that this is attributable
to the fact that, as described above, detecting this
anomaly may require extra world knowledge and
common sense, which certain encoders may have
less access to.6 It is not unexpected, then, that
BERT and RoBERTa, with comparatively much
larger and more diverse training data exposure,
show a large margin of advantage on this chal-
lenging SubN-ObN task relative to the other en-
coders. Agree-Shift patterns roughly on par with
Mod-Noun, though notably InferSent (and Skip-
thoughts) detects the agreement anomaly much
more readily than it does the Mod-Noun anomaly.

Comparing between encoders, we see clear strat-
ification in performance. InferSent shows the
least anomaly awareness, performing for half of
the tasks at chance level with the BoW baseline.
GenSen and Skip-thoughts, by contrast, consis-
tently occupy a higher performance tier, often
falling not far behind (but never quite on par with)
the highest level of performance. The latter distinc-
tion is reserved for BERT and RoBERTa, which
show the strongest anomaly sensitivity on all tasks.
All models show stronger performance on Verb-Ob
than Mod-Noun, but the hierarchical difference be-
tween these tasks seems to have particularly signif-
icant impact for InferSent and Skip-thoughts, with
cues relating to Verb-Ob seemingly encoded by In-
ferSent, but cues relating to Mod-Noun seeming to
be absent. Mod-Noun also yields the largest margin
of difference between GenSen and Skip-thoughts.
Since Skip-thoughts is one objective of GenSen,
this suggests that the additional GenSen objectives
provide an edge particularly for the finer-grained
information needed for Mod-Noun.

BERT and RoBERTa emerge soundly as the
strongest encoders of anomaly information, with
RoBERTa also consistently outperforming BERT.
While this is in line with patterns of downstream
task performance from these models, it is notewor-
thy that these models also show superior perfor-

6As an encoder trained on semantic reasoning, InferSent
nonetheless fails terribly on this task—this may be explained
by findings that heuristics can account for much of NLI task
learning (Poliak et al., 2018c; McCoy et al., 2020).



mance on these anomaly-detection tasks, as it is
not obvious that encoding anomaly information
would be relevant for these models’ pre-training
objectives, or for the most common NLU tasks on
which they are typically evaluated.

6 Investigation on Generality of
Anomaly Encoding

The above experiments suggest that embeddings
from many of these encoders contain signal en-
abling detection of the presence of syntactic anoma-
lies. However, these results cannot tell us whether
these embeddings encode awareness that an “er-
ror” is present per se—the classifiers may simply
have learned to detect properties associated with
a given anomaly, e.g., agreement mismatches, or
occurrence of modifiers after nouns. In this sense,
the above experiments serve as finer-grained tests
of levels of hierarchical information available in
these embeddings, but still do not test awareness of
the notion of anomaly in general.

In this section we take a closer look at anomaly
awareness per se, by testing the extent to which
the sensitivities identified above are specific to in-
dividual anomalies, or reflective of a more abstract
“error” signal that would apply across anomalies.
We explore this question by testing transfer perfor-
mance between different anomaly types.

Transfer Results While in Section 5 we focused
on examining anomaly-specific sensitivity in our
new tasks—testing variation along fine-grained
syntactic hierarchical distinctions and in a word-
controlled setting—for examining generality of
anomaly encoding it is worthwhile to take into
account a broader range of anomaly types and
datasets. For this reason we examine transfer be-
tween each of our generated probing tasks, as well
as transfer to our tasks from established datasets:
SOMO, BShift, and CoordInv from Conneau et al.
(2018), and the CoLA task (Warstadt et al., 2019).

Fig. 2 shows transfer results from each dataset
to each of our tasks. For ease of comparison, we
also show the test result achieved when training on
the same anomaly (the non-transfer result) in the
white bars. We see that the majority of encoders
show a marked drop in performance relative to the
original non-transfer accuracy, and in fact most
of the transfer results are approximately at chance
performance. This suggests that the embeddings
from these models encode information supporting
detection of these anomalies, but the signals that

enable this detection are anomaly-specific. That
is, they may encode some syntactic/semantic sig-
nal supporting detection of specific anomalies, but
there is no indication that they encode a general
awareness that “there is an anomaly”.

The notable exceptions to this poor transfer per-
formance are the transformer-based models, BERT
and RoBERTa, which by stark contrast to the RNN-
based encoders, show non-trivial transfer perfor-
mance across all four of our generated tasks, re-
gardless of the anomaly that the classifier is trained
on. This suggests that to a much greater extent than
any of the other encoders, BERT and RoBERTa
may encode a more general “error” signal, allowing
for generalization across anomalies. Importantly,
BERT and RoBERTa do also show some perfor-
mance drop from non-transfer to transfer settings—
so while they may encode a more generalized “er-
ror” signal, this is likely in combination with en-
coding of anomaly-specific information that further
aids performance on a given anomaly.

We note that transfer performance from CoLA
is typically comparable to, or occasionally better
than, training on the Conneau et al. tasks–despite
the fact that CoLA has much smaller training data.
CoLA is also the only task that contains a variety of
anomalies for the model to learn from, rather than
a single anomaly type as in all other datasets. This
may enable faster, more generalizable learning on
this small dataset—but of course, this would only
be possible if a generalized anomaly signal is avail-
able in the embeddings. Following this reasoning,
we also test whether jointly training on multiple
anomalies improves transfer performance. The re-
sults of these multi-task transfer experiments can
be found in Appendix Tables 7-8. These transfer re-
sults show overall a small decrease in performance
relative to the one-to-one transfer, suggesting that
training on single types of anomalies is not creating
any major disadvantage for transfer performance. It
may also indicate that mixed types of higher-level
oddity in natural occurring anomalies from CoLA
is not trivial to simulate by stacking together data
with single type of anomalies as we do here.

The Conneau et al. task that most often shows
the best transfer to our tasks (especially Mod-Noun
and Verb-Ob) is BShift. This is sensible, given
that that task involves detecting a switch in word
order within a bigram. Given this similarity, we
can expect to see some transfer from this task even
in the absence of generalized anomaly encoding.



Figure 2: Results on transfer settings, by test tasks. Different patterns/colors represent different training tasks.
Results for non-transfer settings (same training and test tasks) are shown in white bars.

As for how our generated anomaly types vary
in supporting transfer to other anomaly types, we
again note some differences between Mod-Noun
and Verb-Ob. While Verb-Ob proved more acces-
sible for detection than Mod-Noun, in the transfer
setting we find that the broader hierarchical pertur-
bation in Verb-Ob is often less conducive to transfer
than Mod-Noun. Below we explore further to better
understand what models are learning when trained
on these anomalies.

7 Further analyses

7.1 Exploring false positives

The results above indicate that embeddings from
these encoders contain non-trivial signal relevant
for specific perturbations, but only BERT and
RoBERTa show promise for encoding more gen-
eral awareness of anomalies. To further explore the

anomaly signal learned from these representations,
in this section we apply the learned anomaly classi-
fiers to an entirely new dataset, for which no pertur-
bations have been made. For this purpose, we use
the Subj-Num dataset from Conneau et al. (2018).7

By default we can assume that all sentences in these
data are non-anomalous, so any sentences labeled
as perturbed can be considered errors. After testing
the pre-trained classifiers on embeddings of these
unperturbed sentences, we examine these false pos-
itives to shed further light on what the classifiers
have come to consider anomalies. We focus this
analysis on BERT and RoBERTa, as the two mod-
els that show the best anomaly detection and the
only signs of generalized anomaly encoding.

Error rates for this experiment are shown in Ap-
pendix Table 6. We see that in general the false pos-

7Dataset size is 10k sentences (test set).



Train task Mod-Noun Verb-Ob SubN-ObN Agree-Shift
BERT 4.9% 2.61% 4.81% 31.98%
RoBERTa 7.73% 3.6% 7.83% 22.13%

Table 1: Error rate on Subj-Num data.

itive rates for these models are very low. The high-
est error rates are found for the classifiers trained
on Agree-Shift, and examination of these false pos-
itives suggests that the majority of these errors
are driven by confusion in the face of past-tense
verbs (past tense verbs do not inflect for number in
English—so past tense verbs were few, and unin-
formative when present, in our Agree-Shift task).
This type of error is less informative for our pur-
poses, so we exclude the Agree-Shift classifier for
these error analyses. For the other classifiers, the
error rates are very low, suggesting that the signal
picked up on by these classifiers is precise enough
to minimize false positives in normal inputs.

To examine generality of the anomaly signal
detected by the classifiers, we look first to sen-
tences that receive false positives from multiple
of the three reordering-based classifiers. We find
that within the union of false positives identified
across all three classifiers, sentences that are la-
beled as anomalous by at least two classifiers make
up 28.6% and 35.6% for BERT and RoBERTa
respectively—and sentences labeled as anomalous
by all three classifiers make up 7.3% and 9.6%.
Since no two classifiers were trained on the same
perturbation, the existence of such overlap is con-
sistent with some generality in the anomaly signal
for the representations from these two models.

Table 2 lists samples of false positives iden-
tified by all three classifiers. While these sen-
tences are generally grammatical, we see that many
of them use somewhat convoluted structures—in
many cases one can imagine a human requiring a
second pass to parse these correctly. In some cases,
as in the “Fireworks” example, there is not a full
sentence—or in the “ornaments” example, there
appears to be an actual ungrammaticality. The fact
that the classifiers converge on sentences that do
contain some structural oddity supports the notion
that these classifiers may, on the basis of these mod-
els’ embeddings, have picked up on somewhat of a
legitimate concept of syntactic anomaly.

Of course, there are also many items that indi-
vidual classifiers identify uniquely. We show exam-
ples of these in Appendix Table 5. The presence
of such anomaly-specific errors is consistent with

Figure 3: Performance of encoders on original tasks vs.
“content-word-only” tasks (function words removed).
Numbers in embedded table show change in accuracy
from original to content-word-only setting.

our findings in Section 6, that even with BERT
and RoBERTa the classifiers appear to benefit from
some anomaly-specific signal in addition to the
potential generalized anomaly signal.

Examining these classifier-specific false posi-
tives, we can see some patterns emerging. The
Mod-Noun classifier seems to be fooled in some
cases by instances in which a modifier comes at the
end of a phrase (e.g., “a lovely misty gray”). For
Verb-Ob, the classifier seems at times to be fooled
by grammatical sentences ending with a verb, or
by fronting of prepositional phrases. For SubN-
ObN, the false positives often involve nouns that
are likely uncommon as subjects, such as “bases”.
All of these patterns suggest that to some extent, the
anomaly-specific cues that the classifiers detect are
closely tied to the particulars of our perturbations—
some of which may constitute artifacts—and in
some cases, they raise the question of whether clas-
sifiers can succeed on these tasks based on fairly
superficial word position cues, rather than syntax
per se. We follow up on this question in the follow-
ing section.

7.2 Role of content word order

To explore the possibility that classifiers may be
succeeding in anomaly detection based on word
position cues alone, rather than details of syntactic
structure, we run a follow-up test using content-
word-only versions of our probes. This serves as a
test of how well the models can get by with coarser-
grained information about content words positions.



BERT

Dolores asked pointing to a sway backed building made in part of logs and cover with a tin roof .
Fireworks∗ , animals woven of fire and women dancing with flames .
There were nice accessible veins there .
Three rusty screws down and Beth spoke , making him jump .
The pillars were still warming up , but the more powerful they got the more obvious it became to Mac about what was going on .
The signals grew clearer , voices , at first faint , then very clear .

RoBERTa

One row , all the way across , formed words connected without spaces .
And kidnappers with God only knew what agenda .
The slums would burn , not stone nobleman keeps . “
“ Hull reinforcements are out of power .
From inside that pyramid seventy centuries look out at us .
The ornaments∗ she wore sparkled but isn ’t noticeable much , as her blissful countenance shined over , surpassing it .

Table 2: Representative false positives shared by all three reordering classifiers.

Fig. 3 shows anomaly detection performance
when embeddings reflect only content words, as
compared to the original anomaly detection perfor-
mance. We see that across tasks, anomaly detection
performance of Skip-thoughts, GenSen, BERT, and
RoBERTa are all reduced as a result of the loss of
function words. BERT and RoBERTa in particu-
lar show substantial losses for the three reordering
tasks, indicating that these models benefit signifi-
cantly from function words for encoding the infor-
mation that supports detection of these anomalies.
It is also worth noting, however, that the models do
retain a non-trivial portion of their original accu-
racy even with function words absent, supporting
the idea that to some extent these perturbations can
be detected through coarser position information
rather than fine-grained syntax.8 This is an obser-
vation worth keeping in mind, particularly when
interpreting anomaly detection as evidence of syn-
tactic encoding (e.g. Conneau et al., 2018).

8 Discussion

In the experiments above, we have taken a closer
look at the nature of syntactic anomaly encoding
in sentence embeddings. Using fine-grained varia-
tion in types of syntactic anomalies, we show dif-
ferences in patterns of anomaly detection across
encoders, suggesting corresponding differences
in the types of anomaly information encoded by
these models. While the margins of difference
in anomaly-specific sensitivity are less dramatic
between small RNN-based models and larger trans-
former models, when we examine the generality
of the detected anomaly signal, we find that only
BERT and RoBERTa show signs of higher-level

8The notion that coarser position information alone can
contribute non-trivially to anomaly identification is further
supported by testing on normal sentences in Subj-Num when
training on the content-word-only setting; for these results,
see Appendix Table 6.

anomaly awareness, as evidenced by non-trivial
transfer performance between anomalies.

What might be driving the anomaly encoding
patterns indicated by our results? Explicit syntactic
training does not appear to be necessary. GenSen
is the only model that includes an explicit syntac-
tic component in its training (constituency pars-
ing), which could help to explain that model’s com-
paratively strong performance on the individual
anomaly detection tasks. However, it is noteworthy
that GenSen performs mostly on par with Skip-
thoughts, which constitutes just one of GenSen’s
objectives, and which uses only prediction of ad-
jacent sentences. BERT and RoBERTa, the only
models to show signs of more generalized anomaly
encoding, have no explicit syntactic training at
all. However, various findings have suggested that
these types of models do develop syntactic sensi-
tivity as a result of their more generalized training
objectives (Goldberg, 2019; Liu et al., 2019a; Alle-
man et al., 2021; Tenney et al., 2019).

We can imagine various ways in which objec-
tives involving prediction of words in context,
as used by BERT and RoBERTa, could encour-
age learning of a generalized notion of syntactic
anomaly. It may be the case that oddities occur
together, in which case they could be mutually
predictive and therefore of value for optimizing a
prediction-based objective. More generally, anoma-
lous sentences are likely identifiable as less proba-
ble, or more difficult to generate coherent predic-
tions for. This relationship between anomaly and
sentence probability raises a related question: Is
this a problem for our conclusions here? Could
models simply be identifying anomalous sentences
as less probable, without any actual notion of syn-
tactic anomaly? In NLP models, assessment of
text probabilities is closely related to assessment
of text naturalness and acceptability. For this rea-
son, teasing apart general sensitivity to probability



versus genuine awareness of syntactic grammati-
cality phenomena is a recurring challenge when
testing syntactic knowledge in language models—
and these things are similarly potentially entan-
gled in our analyses here. To an extent this en-
tanglement is inevitable and unproblematic: we
necessarily expect syntactic anomalies to lower the
probability of a string, and we can expect some
awareness of syntactic anomaly to be important for
assigning lower probability to an ungrammatical
string. We can imagine, for instance, a situation
in which a language model has no sensitivity to
what constitutes good versus anomalous syntax,
and thus assigns probability solely on the basis of
word co-occurrence or other unrelated indicators
of naturalness. In this sense, although it is not
difficult to imagine how the close relationship be-
tween anomaly and sentence probability could be
an explanation for findings that suggest anomaly
awareness in these models, this does not change
the fact that model representations may end up
with genuine, detectable encoding of generalized
anomaly information as a byproduct of probabilis-
tic training—and this genuine anomaly encoding
may be what we are detecting with our tests here.
However, future work can examine further the re-
lationship between syntactic anomaly and model
perplexities, to explore whether these embeddings
could show signs of anomaly sensitivity while in
fact exclusively encoding confounding probabilis-
tic information unrelated to syntactic anomaly.

Our content-word-only analysis provides one
source of evidence on the relative importance of
genuine syntactic sensitivity in success on our
syntactic-related anomaly tasks. This test aims to
tease apart the extent to which success on our tasks
requires processing of finer-grained syntactic infor-
mation, versus the extent to which models can suc-
ceed based on more superficial content word posi-
tion information. We find in this analysis that most
encoders do benefit from the finer-grained syntactic
information provided by function words, support-
ing an important role for more advanced syntactic
sensitivity in these tasks—however, we also find
that substantial proportions of the observed detec-
tion accuracy can indeed be achieved with content
words alone. To the best of our knowledge, we are
the first to report this finding. This leaves us with
two key takeaways. First, to an extent there is good
reason to believe that a reasonable amount of gen-
uine syntactic sensitivity is involved in the highest

levels of success on our anomaly tasks. Second,
success on syntactic anomaly tasks can also be non-
trivially inflated by use of more superficial cues.
That is to say, as usual, these datasets have a habit
of enabling learning from simpler cues than are in-
tended. This takeaway highlights a need for caution
in interpreting detection of reordering anomalies as
evidence of deeper syntactic encoding per se (Con-
neau et al., 2018)—especially in probing datasets
that use naturally-occurring data without exerting
controls for confounding cues.

While these results have shed light on potential
encoding of generalized syntactic anomaly knowl-
edge in pre-trained models, there are many further
questions to pursue with respect to these models’
handling and understanding of such anomalies. We
will leave for future work the problem of under-
standing in greater detail how model training may
contribute to encoding of a generalized awareness
of anomalies in text, how a genuine notion of syn-
tactic anomaly could be further disentangled from
general probability sensitivity, and how one could
exploit models’ awareness of anomaly for improv-
ing model robustness on downstream pipelines.

9 Conclusion

We have undertaken a direct study of anomaly en-
coding in sentence embeddings, finding impacts of
hierarchical differences in anomaly type, but find-
ing evidence of generalized anomaly encoding only
in BERT and RoBERTa. Follow-up analyses sup-
port the conclusion that these embeddings encode
a combination of generalized and anomaly-specific
cues in these embeddings, with models appearing
to leverage both finer-grained and coarser-grained
information for anomaly detection. These results
contribute to our understanding of the nature of
encoding of linguistic input in embeddings from
recent models. Future work can further explore the
relationship between naturalness-oriented training
and cultivation of abstract anomaly awareness, and
how these insights can be leveraged for more robust
and human-like processing of language inputs.
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A Appendix

A.1 Cross-lingual encoders
Our probing tasks focus on anomalies defined rela-
tive to English syntax—but of course grammatical
properties vary from language to language. Some
of our perturbations produce constructions that
are grammatical in other languages. We compare
Universal Sentence Encoder (Cer et al., 2018) in
the variants of both monolingual and cross-lingual
(Chidambaram et al., 2019) trained models—Multi-
task en-en, Multi-task en-fr, and Multi-task en-de.
This allows us to examine impacts of cross-lingual
learning, between English and different target lan-
guages, on anomaly sensitivity. 9

From Table 3, we see that the two cross-lingual
encoders (Multi-task en-fr and Multi-task en-de)
do show slightly stronger anomaly detection rela-
tive to the monolingual model (Multi-task en-en)
on Mod-Noun, Verb-Ob, and Agree-Shift, while
having similar accuracy on SubN-ObN. This sug-
gests that to accomplish the cross-lingual mapping

9We do not discuss this cross-lingual results in the main
paper due to that the differences between mono-lingual en-
coder and its cross-lingual variants are small. But we do think
the constant patterns behind the differences here are inspiring.

from English to French or English to German, these
models may carry out somewhat more explicit en-
coding of syntactic ordering information, as well as
morphological agreement information, resulting in
encoded embeddings being more sensitive to cor-
responding anomalies relative to the monolingual
model. As we have discussed in the main paper,
anomaly detection in the SubN-ObN task likely in-
volves understanding extra world knowledge, so
it is perhaps not surprising that the cross-lingual
component does not provide a boost in sensitiv-
ity on that task. For the most part, we find that
the difference between the English-to-French and
English-to-German mapping does not significantly
impact encoding of the tested anomaly types.

(accuracy %) Multi-task en-en Multi-task en-fr Multi-task en-de

Mod-Noun 54.858 57.539 59.109
Verb-Ob 63.204 66.188 66.345
SubN-ObN 56.91 56.372 56.641
Agree-Shift 56.125 61.746 61.33

Table 3: Anomaly detection results on mono-lingual
encoder vs. its cross-lingual variants. (MLP)

As for the transferability of the anomaly encod-
ing (especially on the multi-one transfer, see Table
7), we observe non-trivial performance improve-
ment in the multi-task setting for the Multi-task
en-en model, relative to the cross-lingual variants.
This suggests that Multi-task en-en may result in
a somewhat more generalized anomaly encoding,
while cross-lingual variants are more sensitive to
properties of individual anomalies.

A.2 Logistic regression results

LR

BoW InferSent
Skip-
thoughts

GenSen BERT Roberta

Mod-Noun 50 57.595 69.329 79.459 82.903 87.189
Verb-Ob 50 72.078 85.001 87.469 93.033 95.187
SubN-ObN 50 56.451 57.774 61.723 80.48 85.484
Agree-Shift 55.34 72.403 72.93 72.538 83.778 91.676

MLP

BoW InferSent
Skip-
thoughts

GenSen BERT Roberta

Mod-Noun 50 50.662 71.764 80.132 83.453 87.514
Verb-Ob 50 72.605 87.133 87.794 93.572 95.277
SubN-ObN 50 50 58.975 62.284 81.176 85.943
Agree-Shift 56.518 73.166 75.701 74.736 87.536 92.282

Table 4: Results (accuracy %) on original anomaly de-
tection tasks, comparing between LR and MLP classi-
fiers. The MLP results are the same as what has been
shown in Fig. 1 in the main body.

As seen in Table 4, the results suggest that, for
the most part, training with LR yields comparable



performance to that with MLP, consistent with the
findings of Conneau et al. (2018).10 We do find,
however, that the LR classifier has higher accuracy
for InferSent on Mod-Noun and SubN-ObN. This
suggests that, to the extent that these anomalies are
encoded (perhaps only weakly) in InferSent, they
may in fact be better suited to linear extraction.
For the task of Agree-Shift, most encoders show
large improvements on MLP over LR, suggesting
that morphological agreement anomalies are less
conducive to linear extraction.

A.3 Error Analysis and the Role of Content
Word Order

We show the error analysis results on the out-of-
sample Subj-Num data in this part. Table 6 shows
the error rate in terms of each training task (original
and content-word-only), with the top two strongest
encoders within our investigation. Table 5 lists
sampled false positives identified exclusively by
each classifier, along with corresponding initial
observations.

As we see in the main paper, BERT and
RoBERTa show non-trivial benefits from functional
information for improving overall anomaly sensitiv-
ity, but the content-word-only setting can account
for a substantial proportion of contribution for de-
tecting the anomalies. This is roughly consistent
with what we found in Table 6 that training from
content word order only can lead to relatively lower
error rate for most cases on normal sentences.

A.4 Transferring via Multi-Task Learning
Tables 7-8 list the multi-one transferring results
with consistent training size compared to that of
one-one transferring. We show the multi-one trans-
fer results along with the performance change rel-
ative to the best one-one results obtained on the
current test task when training with any one of the
joint training tasks. Most of the multi-one trans-
fer results show small amount of decrease from
one-one transfer, suggesting that classifiers are still
fitting to anomaly-specific properties that reduce
transfer of anomaly detection.

A.5 Description of External Tasks for
Transfer Training

SOMO SOMO distinguishes whether a randomly
picked noun or verb was replaced with another

10Since we observe performance of LR to be mostly on par
with one-hidden-layer MLP, we expect benefits of exploration
with further classifier complexity to be limited.

noun or verb in a sentence.

BShift BShift distinguishes whether two consec-
utive tokens within a sentence have been inverted.

CoordInv CoordInv distinguishes whether the or-
der of two co-ordinated clausal conjoints within a
sentence has been inverted.

CoLA CoLA tests detection of general linguis-
tic acceptability in natural occurring corpus, using
expert annotations by humans.

A.6 Description of Encoders

InferSent InferSent is a sentence encoder opti-
mized for natural language inference (NLI), mainly
focusing on capturing semantic reasoning informa-
tion for general use.

Skip-thoughts Skip-thoughts is a sentence en-
coder framework trained on the Toronto BookCor-
pus, with an encoder-decoder architecture, to re-
construct sentences preceding and following an
encoded sentence.

GenSen GenSen is a general-purpose sentence
encoder trained via large-scale multi-task learning.
Training objectives include Skip-thoughts, NLI,
machine translation, and constituency parsing.

BERT BERT is a deep bidirectional transformer
model, pre-trained on tasks of masked language
modeling (MLM) and next-sentence prediction
(NSP).

RoBERTa RoBERTa is a variant of BERT, and
outperforms BERT on a suite of downstream tasks.
RoBERTa builds on BERT’s MLM strategy, re-
moving BERT’s NSP objective, with improved pre-
training methodologies, such as dynamically mask-
ing. 11

A.7 Implementation Details

Hyperparameters Dropout rate is set to be 0.25.
Batch size is set to be 64. Early stopping is applied.
The optimizer is Adam. The learning rate is ex-
plored within {0.01, 0.001, 0.0001, 0.00001}. The
MLP classifier has one hidden layer of 512 units.

11We use bert-large-uncased-whole-word-masking, and
roberta-large. We take the average of fixed pre-trained embed-
dings from the last layer for all sentence tokens. Pilot experi-
ments show comparable performance between the average of
all token embeddings versus the first/CLS token embedding.



Exclusive in Mod-Noun

BERT
The buildings here were all a lovely misty gray , which gave them a dreamlike quality .
There are terrible slums in London Daisy , places you ’d never want to visit .

RoBERTa
Suddenly , his senses sharpened and he felt less inebriated .
All the charts are in drawers below the table .

observation

Most of the samples involve a construction which is “seemingly a noun followed by a modifier format”.
For BERT, the samples seem to involve multiple adjectives in a row, where the final word is more frequently to be an adjective
generally, and is more clear following the Mod-Noun-specific detection rules.
For RoBERTa, e.g., “drawers below the table”, “drawers” actually belongs to another prepositional phrase “in drawers” which is parallel
to the followed by prepositional phrase “below the table”.

Exclusive in Verb-Ob

BERT
Slowly , the gatehouse rose .
Through their windows , thick candles spread throughout flickered softly .

RoBERTa
A satisfactory rate of exchange I feel .
The entire column stretched back almost as far as the eye could see .

observation
A clear pattern across both encoders: the error samples involve fronting such as prepositional phrase-fronting or object-fronting, or involve
constructions end with a verb/verb phrase (thus not with a standard SVO structure).

Exclusive in SubN-ObN

BERT
The object changed as he spoke .
The bases were wide , and as the buildings climbed into the sky , they became narrower and branched off to connect to other buildings .

RoBERTa
That joint will help you sleep .
The stealth assassin never belonged , but the reason will shatter his every conviction .

observation For both encoders, the subject word of the sampled sentence is always an uncommon subject word.

Exclusive in Agree-Shift

BERT
Not even the vendors who stood at their little shops or at their carts and called out their specials cared that I was there .
The Tiger Man , still awake , regarded her with groggy eyes .

RoBERTa
My brows went up .
A humorless laugh escaped his mouth and all I could do was stand mute , my heart breaking .

observation Almost all of the error samples are with past tense main verb, across both encoders.

Table 5: Sampled examples for error analysis, along with some basic observed patterns. We list sampled typical
examples for which the sentences are false positives exclusively in each of our four tasks. The bold text highlights
words or constructions that possibly relate to what we think as cues that trigger our pre-trained classifier to predict
the whole sentence as perturbed.

original

train task Mod-Noun Verb-Ob SubN-ObN Agree-Shift
BERT 4.9% 2.61% 4.81% 31.98%
RoBERTa 7.73% 3.6% 7.83% 22.13%

content-word-only

train task Mod-Noun Verb-Ob SubN-ObN Agree-Shift
BERT 1.82% 3.75% 2.0% 22.86%
RoBERTa 0.96% 1.64% 1.54% 4.92%

Table 6: Error rate on Subj-Num data, with a total size
of 10,000 sentences (test set). The top rows show the
results when the training on original tasks, while the
bottom rows show the results when training on content-
word-only tasks.

Probing data generation We use the premise
sentences from the train, dev-matched, dev-
mismatched datasets of MultiNLI, with repeats dis-

carded according to the promptID. 12 13

We adopt an approach that we refer to as “ex-
haustive” perturbation: modifying all instances of a
given structure within a sentence, to ensure that sen-
tences have internal structural consistency—e.g.,
a perturbed sentence in Mod-Noun will not con-
tain both “modifier+noun” and “noun+modifier”
structures—thus avoiding inconsistency serving as
an extra signal for detection. 14

For each task, we use training data of 71k sen-
tences, and dev and test data of 8.9k sentences.

For the SubN-ObN and the Mod-Noun tasks,15

12The following tools are used for our generation:
nltk.tree https://www.nltk.org/_modules/nltk/
tree.html, and spaCy https://spacy.io. The trans-
formation tool (along with extra rules) for Agree-Shift:
https://www.clips.uantwerpen.be/pages/pattern.

13The ratio of plural verbs to single verbs (VBP/VBZ) in
the original sentences is 1.044/1.

14The average number of modifications per sentence is 1.69,
1.97, 1.0, and 1.97 for Mod-Noun, Verb-Ob, SubN-ObN, and
Agree-Shift), respectively. Note that when we instead restrict
perturbations to a single modification per sentence, we see
that the same basic patterns across tasks are retained.

15For the task of Mod-Noun, this could in particular happen

https://www.nltk.org/_modules/nltk/tree.html
https://www.nltk.org/_modules/nltk/tree.html
https://spacy.io


Encoder/Train task

multi-task
(Verb-Ob +

SubN-ObN +
Agree-Shift)

multi-task
(Mod-Noun +
SubN-ObN +
Agree-Shift)

multi-task
(Mod-Noun +

Verb-Ob +
Agree-Shift)

multi-task
(Mod-Noun +

Verb-Ob +
SubN-ObN)

Mod-Noun ∆ Verb-Ob ∆ SubN-ObN ∆ Agree-Shift ∆

BoW 50.0 0.0 50.0 0.0 50.0 0.0 50.0 0.0
InferSent 50.011 0.011 54.61 0.012 51.369 0.92 54.337 -0.1

Skip-thoughts 53.298 -0.83 63.022 6.001 51.357 -0.46 55.289 0.034
GenSen 55.531 -1.772 60.61 2.456 52.984 -0.213 54.729 1.401
BERT 73.996 -0.101 83.614 -0.919 72.616 0.09 71.257 0.941

Multi-task en-en 53.455 0.123 54.587 -2.804 52.984 -0.247 51.154 0.258
Multi-task en-fr 52.165 -0.797 53.41 -0.28 52.244 -1.054 52.824 -0.258
Multi-task en-de 52.008 -0.381 54.419 0.179 52.333 -0.73 52.387 -0.863

Table 7: Transfer results of multi-one transferring among our generated tasks with consistent training size. The
amount of training size of multi-task training is consistent with one-one transferring. The columns of ∆ show how
much the multi-one transferring improves or drops from the best one-one result. The improvements (positive ∆
values) are bolded.

Encoder/Train task
multi-task (SOMO + BShift + CoordInv)

Mod-Noun Verb-Ob SubN-ObN Agree-Shift
acc ∆ acc ∆ acc ∆ acc ∆

BOW 50.0 0.0 50.033 0.033 50.017 0.017 50.0 0.0
Infersen 50.067 -0.833 50.217 -2.316 50.1 -1.2 49.933 -0.5

Skip-thoughts 57.767 -2.666 57.733 -5.05 51.3 -0.85 50.383 -0.4
GenSen 58.533 -4.75 58.867 -4.75 50.533 -1.834 50.783 -1.617
BERT 69.883 -3.967 73.683 -5.1 69.317 -0.75 62.367 -1.55

Multi-task en-en 53.283 0.283 54.0 -0.533 52.617 0.134 51.017 0.084
Multi-task en-fr 50.767 -0.933 52.5 -5.467 51.85 -0.45 51.05 0.117
Multi-task en-de 49.7 -3.4 50.167 -5.3 50.3 -1.167 50.033 -0.5

Table 8: Transfer tasks jointly trained on multi-task learning with all of Conneau et al. tasks, tested on each of our
generated tasks, with consistent training size.

sometimes the case might arise that the resulting
perturbed sentences are still normal or acceptable,
but perhaps somewhat stranger or less probable to
occur in the wild, e.g., “man bites dog”. However,
this should be a rare case, as the original sentences
are long enough to involve adequate context to
distinguish normal from perturbed examples.

with noun phrases involving noun-noun compounds.


