Brain & Language 129 (2014) 14-23

Contents lists available at ScienceDirect

RAIN &
LANGUAGE

Brain & Language

journal homepage: www.elsevier.com/locate/b &l

The role of morphology in phoneme prediction: Evidence from MEG

@ CrossMark

Allyson Ettinger *>%* Tal Linzen?, Alec Marantz *"¢

2 Department of Linguistics, New York University, United States

b Department of Psychology, New York University, United States

€NYUAD Institute, New York University Abu Dhabi, United Arab Emirates
d Department of Linguistics, University of Maryland, United States

ARTICLE INFO ABSTRACT

Article history:
Accepted 24 November 2013

There is substantial neural evidence for the role of morphology (word-internal structure) in visual word
recognition. We extend this work to auditory word recognition, drawing on recent evidence that pho-
neme prediction is central to this process. In a magnetoencephalography (MEG) study, we crossed mor-
phological complexity (bruis-er vs. bourbon) with the predictability of the word ending (bourbon vs.

Keywords: burble). High prediction error (surprisal) led to increased auditory cortex activity. This effect was
MEG » enhanced for morphologically complex words. Additionally, we calculated for each timepoint the surpris-
Spoken word recognition . . . . .

Prediction al corresponding to the phoneme perceived at that timepoint, as well as the cohort entropy, which quan-
Morphology tifies the competition among words compatible with the string prefix up to that timepoint. Higher
Surprisal surprisal increased neural activity at the end of the word, and higher entropy decreased neural activity
Entropy shortly after word onset. These results reinforce the role of morphology and phoneme prediction in spo-

ken word recognition.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

Recent work has illuminated the role of morphology in visual
word recognition. Evidence from both behavioral and brain-based
studies strongly indicates that visually presented words are
decomposed into morphemes based on their visual forms, and that
this visual decomposition feeds lexical access for the lexical infor-
mation associated with morphemes (Fiorentino & Poeppel 2007a,
2007b; Rastle, Davis, & New, 2004; Solomyak & Marantz, 2010, in-
ter alia). Recognition of visually complex words, then, follows the
decomposition, look-up, and recomposition model championed
by Taft and others based on behavioral data (Taft, 2004; Taft & For-
ster, 1975).

The role of morphological structure in auditory word recogni-
tion is less studied and less well understood, though it has been
known for some time that morphological structure plays a role in
auditory word recognition as well (Marslen-Wilson, Tyler, Waksler,
& Older, 1994). Recent studies by Baayen, Wurm, and colleagues
point to a predictive role for morpheme recognition during auditory
word recognition (Balling & Baayen, 2008, 2012; Wurm, 1997;
Wurm, Ernestus, Schreuder, & Baayen, 2006). In particular, Balling
and Baayen (2008 and 2012) contrast two general models of recog-
nition. On one, all of the full words consistent with the auditory in-
put, the full word cohort of the word eventually recognized, are
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activated during recognition, with their competing representations
compared against the incoming acoustic signal (Marslen-Wilson,
1987; Marslen-Wilson & Welsh, 1978). On this class of models,
the morphological decomposition of members of the cohort would
not be relevant to cohort competition and would not interact with
prediction of upcoming phonemes from the cohort consistent with
the already processed phonemes. A second model would leave a
role for recognition of component morphemes of the word being
processed (Balling & Baayen, 2008, 2012). Recognition of a mor-
pheme, for example a morphological prefix or a stem, would yield
predictions for upcoming morphemes, and upcoming phonemes
as part of these morphemes. We test the hypothesis that this addi-
tional prediction associated with morphological structure might
enhance the prediction of upcoming phonemes based on the cohort
of full words consistent with the input.

In addition to questions associated with the role of morphology
in auditory word recognition, the actual mechanisms, both cogni-
tive and neural, whereby a cohort of possible words influences pre-
diction and processing of the incoming speech stream has also
been addressed in the recent literature. On the one hand, one
might endorse a competition model in which all members of a co-
hort are activated to an extent proportional to their frequency of
occurrence, with lateral competition between activated cohort
members (Marslen-Wilson, 1987; Marslen-Wilson & Welsh,
1978). On this view, the more members of a cohort and the more
evenly distributed their frequency, the more cognitive and neural
activity associated with activation and active inhibition. In a recent
paper, Gagnepain, Henson, and Davis (2012) suggest that cohort
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competition might not be a main driver of brain activity associated
with auditory word recognition. Rather, they suggest, the unex-
pectedness of the incoming input given the probability distribution
over possible continuations from what has already been processed
is the factor that drives neural activity and affects response times.
They suggest that activity from areas around auditory cortex re-
flect the mismatch between predicted and incoming phonemic
material—a prediction error signal. Their results are also consistent
with the activity reflecting surprisal, which quantifies the change
in the probability distribution over the members of the active co-
hort based on the incoming stimulus (Hale, 2001).

For the role of morphology in auditory word recognition, Balling
and Baayen (2012) propose that online morphological decomposi-
tion leads to prediction, for stems from morphological prefixes and
for suffixes from stems, that is observable in reaction times in lex-
ical decision. All other things being equal, being morphologically
complex aids in auditory word recognition over suitably matched
monomorphemic words (Balling & Baayen 2008; Ji, Gagné, & Spal-
ding, 2011). From Gagnepain et al. (2012), we derive the hypothe-
sis that cohorts of words consistent with auditory input show their
face neurally not through competition, where higher entropy
among members of a cohort would lead to more activity, but
through surprisal, where changes in the probability distribution
over cohort members, with new input, might drive activity—or
through prediction error, where observed lower probability contin-
uations conflict with their higher probability cohort members.
From neural and behavioral work, we might be led to an opposite
conclusion about cohort competition at the beginning of the recog-
nition of auditorily presented words: the higher the entropy over
the cohort, the less activation we will observe (Baayen, Wurm, &
Aycock, 2007; Linzen, Marantz, & Pylkkdnen, 2013; Wurm et al.,
2006). On this view, which we will refer to as the Low-Entropy
Dependent Prediction model (LEDP), higher entropy prevents com-
mitment to prediction for upcoming input, leading to less predic-
tive work and less neural activity, while low entropy allows
more commitment to continuations, thus more work and more
activity.

The present study is a preliminary look at whether contempo-
rary magnetoencephalography (MEG) measurement and analysis
techniques are suitable for investigating the role of morphology
and of cohort entropy online, as participants listen to spoken lan-
guage. In particular, we ask whether morphological complexity en-
hances the prediction of upcoming phonemic material such that
we see more neural activity associated with surprisal during audi-
tory word processing for morphologically complex as opposed to
monomorphemic words.

To approach these questions we manipulated morphological
complexity and surprisal in a 2-by-2 factorial design. The morpho-
logical complexity manipulation consisted of two morpheme con-
ditions: monomorphemic and bimorphemic words. The surprisal
manipulation consisted of two continuation surprisal conditions:
high- and low-surprisal continuations of a shared string prefix.
For bimorphemic pairs (e.g., bruises/bruiser), this string prefix con-
sisted of a morphological stem (bruis-), and the continuations con-
sisted of differing suffixes (-es/-er). For monomorphemic pairs (e.g.,
bourbon/burble), this shared string prefix consisted of phonological
material that did not constitute a morpheme ([bib]), and the con-
tinuations were the final phonemes of the words, which similarly
were not morphemes (e.g., -on/-al).

Each participant heard both words in each pair. This introduced
a third variable: order of presentation within pair. Given evidence
of long-distance morphological priming in auditory word recogni-
tion (Kouider & Dupoux, 2009), this variable is of particular note
for bimorphemic pairs. As such, the ordering position of a stimulus
relative to its pair counterpart was also taken into account in the
analysis.

1.1. Continuous variables

In addition to the factorial design described above, we also
investigate whether we can detect neural activity related to indi-
vidual phoneme prediction on a trial-by-trial basis (Gagnepain
et al., 2012). We used a frequency database to calculate the prob-
ability distribution of all English words compatible with the string
prefix at each time point in each trial. This enabled us to derive
millisecond-by-millisecond estimates of two information-theoretic
quantities: phoneme surprisal and cohort entropy.

The surprisal of the phoneme that is currently being heard is the
inverse of the log of its conditional probability given the phonemes
that preceded it. This probability can be calculated by dividing the
total frequency of the present cohort by the total frequency of the
cohort that was “alive” prior to hearing the current phoneme. For-
mally, if PrefFreq(x) is the summed frequency of all words that start
with the phoneme sequence x, then the surprisal of the third pho-
neme u in bruiser ([bruzr]) would be given by

—log, (PrefFreq(bru) /PrefFreq(br)).

The cohort entropy is the entropy of the probability distribution
over all words that are compatible with the string prefix heard thus
far. If C is the cohort, fiw) is the frequency of a word w, and F¢is the
total frequency of the cohort, then the cohort entropy is given by:

Z@logz@‘
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We predict that higher phoneme surprisal should lead to in-
creased neural activity. We also investigate whether we can ob-
serve an effect of cohort entropy, and, if so, whether the effect is
such that neural activity increases with increased entropy, as pre-
dicted by competition models, or decreases with increased entro-
py, as predicted by the LEDP.

A third variable that we calculated was cohort frequency, which
is the summed frequency of all the words in the cohort. The prior
literature does not afford a specific hypothesis about the potential
significance of this variable. However, in light of the pervasiveness
of frequency effects in language processing, we examine the effect
of this variable informally, and leave an in-depth investigation of
its significance for future research.

1.2. Predictions

In light of prior work suggesting a key role of error detection/
surprisal in auditory processing, as well as work suggesting a pre-
dictive role for morpheme recognition in auditory processing, we
expect to observe an effect of surprisal which is enhanced in mor-
phologically complex words, relative to simple words. This interac-
tion with morphological complexity should apply to the
categorical variable of continuation surprisal, as well as to any ef-
fects of phoneme-by-phoneme surprisal.

We furthermore test for facilitatory effects of entropy early in
the stimulus, as predicted by LEDP models. While cohort competi-
tion models predict an inhibitory effect of entropy during word
comprehension, LEDP models would predict facilitation near word
onset, when entropy is high.

In accordance with the results of Gagnepain et al. (2012), we ex-
pect to see effects of surprisal in auditory regions such as the supe-
rior temporal gyrus (STG) and transverse temporal gyrus (TTG).
Given that morphological decomposition involves accessing lexical
entries, we may also expect to see evidence of the predicted inter-
action with morphological complexity in the middle temporal
gyrus (MTG). These will serve as our three regions of interest (ROIs)
for the analysis.
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2. Methods
2.1. Design and stimuli

The experiment consisted of an auditory lexical decision task,
with simultaneous MEG recording of the magnetic fields induced
by electrical activity in the brain. The factorial design included
two two-level stimulus variables of interest: morphological com-
plexity (bimorphemic and monomorphemic) and continuation sur-
prisal (high- and low-surprisal continuations).

Stimulus words were chosen in pairs from the English Lexicon
Project (ELP) (Balota et al., 2007). For bimorphemic words, contin-
uations of various stems were identified within the ELP, and from
these the highest and lowest-frequency disyllabic items were se-
lected. For monomorphemic words, a search was performed on
the ELP to determine uniqueness points (UP) of disyllabic mono-
morphemic words. Inflected forms were excluded as competitors
in this search, to avoid the UP falling always at word offset. Once
the UP was identified, the point in the transcription just prior to
that UP (the final point at which competitors remained) was then
selected as the end of what served as the shared string prefix for
our monomorphemic stimuli. As with the bimorphemic words,
disyllabic competitors sharing this phonological material were
identified, and the highest and lowest-frequency items among
these were selected. In all but one monomorphemic pair (guava/
guano), the point at which the pair members became phonological-
ly distinct occurred either at or after the syllable break. The aver-
age number of shared phonemes was 3.8 (average number of
shared phonemes in bimorphemic words was 4.3).

The bimorphemic and monomorphemic stimulus lists were then
balanced for surface frequency. For the purposes of balancing, in some
cases the next-highest-/next-lowest-frequency disyllabic competitor
was substituted for the highest-/lowest-frequency pair member.

This process yielded 356 disyllabic words: 178 bimorphemic
words paired according to shared initial morpheme (bruises/brui-
ser), and 178 monomorphemic words paired according to shared
phonological material (bourbon/burble). Each stimulus pair con-
sisted of a high-surprisal and a low-surprisal continuation of the
shared material.

In order to determine whether stimulus conditions were
matched, continuation surprisal values were calculated for all
stimuli (see Table 1). There was a main effect of morphological
complexity (p =.005), such that monomorphemic words had on
average higher continuation surprisal than bimorphemic words.
Crucially, there was no significant interaction between morpholog-
ical complexity and continuation surprisal (p =.774), which is of
most interest in this study.

Stimulus recordings were drawn from the online pronouncing
dictionary Howjsay (http://www.howjsay.com/). In addition to
the 356 stimuli of interest, we selected 356 nonwords. Since we
used a pronouncing dictionary, our nonwords consisted of extre-
mely low-frequency disyllabic words available in the dictionary
(e.g., awacs, blatnoy, edfu, flagyl, hemsut, judder, lobar, quassin, we-
jack, zenzic).!

' A referee points out that the dictionary we used is a British pronunciation
dictionary, yet our participants were generally speakers of American English. We used
this dictionary because unlike comparable websites it provides recordings of inflected
forms, and contains a large number of low frequency items that could serve as
nonwords. In cases of a clear divergence between the British and American
pronunciation (e.g. “tomato”, pronounced [toma:tou] in the UK and [tomerrou] in
the US), the site provides both pronunciations; we used the American pronunciations
for these words. Even the American pronunciations were recorded by a speaker who
had a British-sounding accent, however. We informally debriefed the participants
about the materials. While a few of them reported that the task was made somewhat
more difficult by the speaker’s accent, this never resulted in the participants being
unable to comprehend the stimuli.

Table 1
Continuation surprisal means for all conditions.

High surprisal Low surprisal

Monomorphemic 4.00 1.21
Bimorphemic 3.58 0.68

The nonwords were almost certainly unfamiliar to our partici-
pants. When debriefed post-experiment about their impression
of the word-to-nonword ratio, most subjects reported impressions
of a 50-50 split. A few subjects reported an impression of more
nonwords than words, and only a single subject suspected the
presence of low-frequency words being used in place of non-
words—suggesting that the extremely low-frequency words in-
deed functioned as nonwords, as intended.

Stimulus editing was performed in Audacity (http://audac-
ity.sourceforge.net/). Silence at the beginning and end of each
recording was trimmed, and peak volume was normalized across
recordings. Each recording was then modified to a constant dura-
tion of 750 ms. This duration modification was performed using
the Audacity function “Change tempo”, a functionality allowing a
change in duration without a change in pitch. Duration modifica-
tions were monitored to ensure that final products sounded as nat-
ural as possible.

While the stimulus recordings were edited to durations of
750 ms, the final .wav files contained a 12 ms buffer prior to the
onset of the acoustic signal, as well as a 10 ms buffer after the off-
set. As a result, the acoustic signal occurred approximately be-
tween 12 and 740 ms into the sound file.

The participants heard both items of each pair. In order to coun-
terbalance the order of presentation within each pair, stimuli were
divided into two super-blocks, each containing one member of
every stimulus pair, with morphological complexity and continua-
tion surprisal balanced between blocks. The relative order of these
super-blocks was then varied between subjects (see details in Pro-
cedure section).

2.2. Procedure

Thirteen right-handed native English speakers (6 female) par-
ticipated in the experiment. Handedness was assessed using the
Edinburgh Handedness Inventory (Oldfield, 1971). All subjects pro-
vided written informed consent before participation.

Prior to recording, the head shape of each participant was digi-
tized to allow source localization and coregistration with structural
MRIs (Fastscan; Polhemus, VT). We also digitized three fiducial
points (the nasion and the left and right pre-auricular points)
and the position of five coils, placed around the participant’s face.
Once the participant was situated in the magnetically shielded
room for the experiment, the position of these coils was localized
with respect to the MEG sensors, allowing us to assess the position
of the participant’s head for source reconstruction. Data were re-
corded continuously at the KIT/NYU facility with a 157-channel ax-
ial gradiometer (Kanazawa Institute of Technology, Kanazawa,
Japan) in a dimly lit magnetically shielded room. Data were low-
pass filtered at 200 Hz, with a notch filter at 60 Hz. Stimuli were
presented using Matlab PsychToolbox (Brainard, 1997; Pelli,
1997). Each trial of the experiment consisted of a fixation cross-
presented for 500 ms, followed by the onset of the auditory stimu-
lus. The fixation cross remained on the screen for the duration of
the stimulus and disappeared only after a response was given. Sub-
jects responded to the stimulus by pressing one of two buttons
with their left hand to indicate whether they recognized the stim-
ulus as a word of English. The inter-trial interval was randomly se-
lected between 750 ms and 1250 ms. Trials were randomized
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within super-blocks (halves) of the experiment, and each super-
block was further divided into two sub-blocks in order to allow
subjects additional breaks. In total, subjects heard four blocks of
178 trials each, with breaks between each block. Participants were
allowed to choose the length of their breaks and proceed to the fol-
lowing block when ready.

2.3. Data processing

The preprocessing and analysis of the MEG data closely
followed the procedures of Solomyak and Marantz (2009 and
2010). Environmental noise was removed from the data by
regressing signals recorded from three orthogonally oriented
magnetometers approximately 20 cm away from the recording
array against the recorded data using the continuously adjusted
least squares method (CALM; Adachi, Shimogawara, Higuchi,
Haruta, & Ochiai, 2001).

Outlier trials were excluded based on an absolute threshold of
+3.0 pT, enforced over the time window [0 ms, +1000 ms] for
the noise-reduced MEG data (the number of rejected trials ranged
from 55 to 144, mean 90, median 79). All nonword trials were
excluded.

2.4. Source space analysis

MNE software (Martinos center MGH, Boston) was used to esti-
mate neuroelectric current strength based on the recorded mag-
netic field strengths using minimum [, norm estimation (Dale &
Sereno, 1993; Hdmadldinen, Hari, lmoniemi, Knuutila, & Lounas-
maa, 1993). Current sources were modeled as three orthogonal di-
poles spaced approximately 5 mm apart across the cortical surface
(Dale et al., 2000), yielding 2562 potential electrical sources per
hemisphere. For all subjects, structural MRIs were available from
previous experiments, and each subject’s cortical surface was
reconstructed based on this structural MRI using Freesurfer (Mar-
tinos center). The neuromagnetic data were co-registered with the
structural MRI using MNE by first aligning the fiducial points, and
then using an Iterative Closest Point algorithm to minimize the dif-
ference between the points defining the head shape of each partic-
ipant, and the scalp.

The forward solution was calculated for each source using a sin-
gle-layer boundary element model (BEM) based on the inner-skull
boundary. The estimated activation was normalized by dividing
the estimated activation by the predicted standard error of the
estimate, yielding Dynamic Statistical Parametric Maps (Dale
et al., 2000).

Regions of interest were defined anatomically, using the cortical
parcellation performed by FreeSurfer based on the Desikan-Killi-
any gyral atlas (Desikan et al., 2006). Signed activity was summed
across each ROL

3. Analysis methods
3.1. Regions of interest analysis

Analysis was conducted on three ROIs in the temporal lobe: the
transverse temporal gyrus (auditory cortex), superior temporal
gyrus, and middle temporal gyrus. The anatomical FreeSurfer la-
bels (Desikan et al., 2006) corresponding to these regions served
as the ROIs for the analysis. The inverse solution over all trials
was calculated within the target label of each individual subject.
The transverse temporal, superior temporal, and middle temporal
ROIs, and grand average activation (at around 500 ms) are pictured
in Fig. 1A. Fig. 1B shows grand average activation in all ROIs over
time.

3.2. Factorial analysis

The continuation surprisal manipulation had its critical effect at
the end of each stimulus (the beginning of the stimulus was iden-
tical between the two words in each pair). As such, the 200 ms
time window following the offset of the word was selected for
the factorial analysis. We averaged the neural activity in the
200 ms time window following the offset of the word to yield a sin-
gle value per trial, and submitted the single-trial averaged activity
values to a series of linear mixed-effects models using the Ime4
package (Bates, Maechler, & Bolker, 2012) in R (R Core Team,
2012). Each model included a by-item intercept, a by-subject inter-
cept, and by-subject slopes for all of the independent variables (a
maximal random effect structure, following Barr, Levy, Scheepers,
& Tily, 2013). We obtained p-values using the chi-squared approx-
imation for the likelihood ratio test. In this test, the difference be-
tween the deviance (twice the log likelihood) of a model without
the fixed effect of interest and a model with the fixed effect (but
still with a maximal random effects structure) is assumed to be
x>-distributed with one degree of freedom (Baayen, Davidson, &
Bates, 2008; Pinheiro & Bates, 2000). This was done sequentially:
the two predictors (morphological complexity and continuation
surprisal) were added one by one, followed by their interaction.
This procedure is a generalization of a sequential (“Type I’) ANO-
VA. In a balanced design such as ours, the p-values derived from
this procedure are an accurate measure of the contribution of each
factor. The same procedure was employed for the analysis of the
behavioral measures, with the exception that the accuracy data
were analyzed by means of logistic regression. Trials for which
reaction times were more than 2.5 standard deviations above the
(log-transformed) mean reaction time for all subjects were ex-
cluded for reaction time analyses.

3.3. Continuous analysis

Phoneme-by-phoneme surprisal and entropy values were cal-
culated based on the procedure described in the introduction. Spe-
cifically, we used the SUBTLEX-US word frequency database
(Brysbaert & New, 2009) to calculate the probability distribution
over all string-prefix cohorts in English, based on the phonemic
transcriptions provided in the English Lexicon Project (Balota
et al., 2007). Segment boundaries were then located in the acoustic
signal of each stimulus through combined use of the Penn Forced
Aligner (Yuan & Liberman, 2008) and visual inspection. In this
manner, millisecond-by-millisecond surprisal and entropy values
were obtained for use in mixed-effects model analysis (see Fig. 2).

Analysis of the phoneme surprisal variable involved the follow-
ing variation on the correlation wave method used in Solomyak
and Marantz (2009). We fit linear mixed-effects models at each
millisecond within our time window of interest. For each millisec-
ond of stimulus duration (750 ms), the corresponding surprisal val-
ues were correlated with the brain activity at one millisecond
within a 750 ms time window following (not necessarily directly;
see below) the onset of the stimulus.

Multiple comparisons correction was performed over the same
time window, using a cluster-based permutation test (Maris &
Oostenveld, 2007), as adapted by Solomyak and Marantz (2009).
Specifically, the largest cluster of significant t-values in the same
direction (with significance threshold set at t>1.96, p<0.05
uncorrected) was identified and compared to the largest cluster
of significant values in each of 1000 random permutations of
the independent variable (cluster size here refers to the sum of
the t-values within the cluster in question). We fit a total of
750,000 mixed-effects models for each analysis (750 timepoints
times 1000 permutations), which made it computationally imprac-
tical to use a maximal random effect structure in the linear
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Fig. 1. (A) TTG (top left), STG (top right) and MTG (bottom left) ROIs, as well as grand average activation at approximately 500 ms (bottom right). Blue coloring signifies
negative activation; red signifies positive activation. (B) Mean activation over time for TTG (top), STG (middle), and MTG (bottom) ROISs.

mixed-effects models. We used a limited random effect structure
instead, with only random intercepts for items and subjects. Note
that the suboptimal random effect structure does not result in an
inflation of the Type I error, since our p-values are derived from
the Monte Carle procedure outlined above.

The location of the largest significant cluster of t-values for the
main effect of phoneme surprisal was used as the time window of
interest for assessing the significance of the interaction between
phoneme surprisal and morphological complexity. This interaction
was calculated through model comparison between a model with
only the two fixed effects and a model with the two fixed effects
and their interaction. The log-likelihood ratio test produced a
chi-squared statistic at every millisecond within the time window
of interest. Multiple comparisons correction was then performed
over that time window, comparing the largest cluster of significant
chi-squared values in the same direction (with significance
threshold set at y?>3.84, p < 0.05 uncorrected for a chi-squared

distribution with 1 degree of freedom) with the largest cluster in
each of 1000 random permutations of the independent variable.
The millisecond-by-millisecond analysis may overstate the
temporal resolution of MEG in terms of independent observations.
In addition, the length of a typical phoneme is much longer than a
millisecond (typically on the order of magnitude of tens of milli-
seconds). Of course, the beginning of each phoneme is not aligned
across trials, which makes any significant temporal binning or
smoothing likely to distort the results somewhat. Nevertheless,
we replicated our major analyses at a much lower temporal reso-
lution, by binning the data into 50 ms bins (1-50 ms, 51-100 ms,
and so on), averaging the neural activity within each bin, and
repeating the correlational analysis in these longer time units.
Performing a correlational analysis with a vector of stimulus
variables aligned to temporal events (phonemes) necessitated
determining the appropriate lag between the point at which a
segment is presented and the point at which the effects of the
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Phoneme surprisal: "blooming”
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Fig. 2. Phoneme-by-phoneme surprisal and entropy values for the word
“blooming”.

surprisal or cohort entropy value appropriate for that segment are
reflected in the neural activity. The prior literature does not afford
a clear prediction for the precise latency of a surprisal effect. In the
absence of a direct precedent, we decided to test three lags within
the intermediate stage of auditory processing (100-200 ms) ob-
served by Todorovic and de Lange (2012) to be facilitated by stim-
ulus expectation. We tested the main effect of surprisal at lags of
100, 150 and 200 ms, and assessed the appropriateness of each
lag based on the size of the largest cluster of consecutive signifi-
cant t-values in the same direction (significance threshold set at
t>1.96, as before). For all three temporal ROIs, the 200 ms lag
yielded the largest cluster of significant t-values (TTG: 100 ms,
2t=676.4, 150 ms, Xt=799.1, 200 ms, 2t =3822.3; STG: 100 ms,
Xt=503.7, 150 ms, Xt =774.9, 200 ms, Xt =799.3; MTG: 100 ms,
2t=485.7, 150 ms, Xt =762.0, 200 ms, 2t =852.9). We therefore
used a lag of 200 ms for subsequent analyses. Note that for all lags
and in all ROIs, the cluster of significant effects was around the end
of the word.

4. Results
4.1. Behavioral

Both accuracy and reaction time (RT) showed significant effects
of morphological complexity (RT, p =.002; accuracy, p <.001) and
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continuation surprisal (RT, p <.001; accuracy, p <.001), such that
monomorphemic words were responded to more slowly and less
accurately than bimorphemic words, and high surprisal items were
responded to more slowly and less accurately than low surprisal
items. No significant interactions emerged between morphological
complexity and continuation surprisal (RT, p=.124; accuracy,
p=.539): see Fig. 3 and Table 2.

There was no significant main effect of order of presentation
(first or second, relative to pair counterpart) (RT, p =.717; accuracy,
p =.590), nor was there a significant interaction between continu-
ation surprisal and order (RT, p =.587; accuracy, p =.898). Reaction
time did show a significant interaction between morphological
complexity and order (p =.013), such that monomorphemic words
were responded to more slowly when they were the second mem-
ber of their pair to be presented, while bimorphemic words were
responded to more quickly when they were presented second:
see Fig. 4A. To explore the long-distance priming trend for bimor-
phemic words, we checked whether the distance within the exper-
iment between two words that shared a stem affected the amount
of facilitation, calculated as the difference between the RT to the
second word and the RT to the first word. We fit a linear mixed-ef-
fects model with RT reduction as the response variable, distance as
a fixed effect, and by-subject and by-stem random intercepts. The
effect of distance on RT reduction was far from being significant
(t=0.06). In addition, there was no significant interaction between
morphological complexity and order in the accuracy measure
(p=.351). In summary, there was no evidence for an effect of dis-
tance on the amount of priming. However, our design was not opti-
mized to detect such an effect, and the priming effect was small, so
we would hesitate to conclude that distance does not affect
priming.

A marginally significant three-way interaction emerged be-
tween morphological complexity, continuation surprisal, and order
in RT (p =.056). Closer inspection reveals a significant interaction
between morphological complexity and continuation surprisal on
trials in which the stimulus is the first member of its pair to be pre-
sented (p = .024) while this interaction is not significant on second-
presentation trials (p = 1): see Fig. 4B.

Table 2
Reaction time means and accuracy data for all conditions.

High surprisal Low surprisal

Reaction times

Bimorphemic 1.19 1.11
Monomorphemic 1.24 1.19
Accuracy
Bimorphemic 78.5% 89.5%
Monomorphemic 63.1% 77.7%
Accuracy
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Fig. 3. Behavioral results. For both reaction time and accuracy, there was a main effect of both continuation surprisal and morphological complexity, and the interaction was
not significant.
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A Interaction: morphemes * order
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Fig. 4. (A) Interaction between morphological complexity and order. (B) Decomposition of the marginally significant three-way interaction between morphological

complexity, continuation surprisal and order.

4.2. Neural: factorial

All three ROIs showed significant main effects of morphologi-
cal complexity (TTG: p=.001; STG: p =.006; MTG: p <.001) and
continuation surprisal (TTG: p<.001; STG: p=.002; MTG:
p=.004). In the transverse and superior temporal gyri, where
activation is in the negative direction, bimorphemic stimuli
elicited less (negative) activation than did monomorphemic stim-
uli (facilitation), and high surprisal items elicited more negative
activation than did low surprisal items (inhibition). In the middle
temporal gyrus, activity was in the positive direction. In this
region the pattern of effects was, in terms of absolute amplitude,
reversed: bimorphemic stimuli elicited less positive activity, as
did low surprisal stimuli. However, if we disregard zero as a fixed
threshold, we can consider the pattern to be consistent in that
monomorphemic and high surprisal items are eliciting more
negative-going activity than bimorphemic and low surprisal items
for all ROIs.

There was no significant main effect of order in any ROI (TTG:
p=.491; STG: p=1; MTG: p=.784). A significant interaction
emerged between morphological complexity and continuation sur-
prisal in all three ROIs (TTG: p =.033; STG: p =.018; MTG: p = .006),
such that the increase in neural activity for high-surprisal continu-
ations was greater for bimorphemic words than for monomorphe-
mic words.

A significant interaction also emerged between continuation
surprisal and order in transverse temporal (p =.016) and superior
temporal (p =.013) ROIs, with a marginally significant interaction
between these variables in the middle temporal ROI (p = .095), such
that the effect of continuation surprisal was greater for items that
were presented first relative to their pair counterpart. None of the
ROIs showed a significant interaction between morphological com-
plexity and order (TTG: p = .401; STG: p = .433; MTG: p = .413), and
in none of the three ROIs was there a significant three-way interac-
tion between morphological complexity, continuation surprisal,
and order (TTG: p =.447; STG: p=.263; MTG: p=1).

4.3. Neural: continuous

In the continuous analysis (employing, as discussed above, a lag
of 200 ms), a highly significant main effect of phoneme surprisal
emerged at the end of the stimulus in all three ROIs (TTG: 547-
742 ms, p <.001: STG: 545-740 ms, p <.001; MTG: 542-740 ms,
p <.001). Note that time windows listed here represent the time
within the stimulus variable; adding 200 ms will yield the time-
point in the brain activity, starting from the presentation of the
word onset, with which the phoneme-specific variable is being cor-
related. For all three ROIs the direction of this correlation was neg-
ative, indicating that higher surprisal elicited more negative-going
activity.

The interaction between phoneme surprisal and morphological
complexity was also significant in all three ROIs (TTG: p =.03; STG:
p =.05; MTG: p <.001), with the effect of phoneme surprisal being
greater for bimorphemic than for monomorphemic words.

Fig. 5 shows correlation waves for the transverse temporal ROIL

A significant main effect of cohort entropy also appeared in the
beginning of the word (TTG: 135-177 ms, p =.004 corrected over
1-300 ms time window): see Fig. 6A.

As mentioned in the Methods section, we repeated the major
continuous analyses after averaging the neural activity in non-
overlapping 50 ms bins (plots are available as part of the Online
Supplementary materials). The pattern of results was similar
across regions; we only report the result from the TTG for reasons
of space. The qualitative shape of the binned plots was very similar
to the millisecond-by-millisecond ones. The effect of surprisal dif-
fered between the monomorphemic and bimorphemic conditions:
the bimorphemic words showed a strong surprisal effect from
550 ms onwards (peaking in t=-5.3 between 700ms and
750 ms), whereas the monomorphemic words showed a much
smaller surprisal effect (peaking in t=-2.94 between 650 ms
and 700 ms). The late surprisal effect for bimorphemic words
was very similar between the first and second presentation of
the same stem. Somewhat counterintuitively, the smaller surprisal
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Fig. 5. Timepoint-by-timepoint correlations between phoneme surprisal and
activity in transverse temporal gyrus, calculated by fitting linear mixed-effects
models to neural activity at each timepoint, with subjects and items as random
effects. A 200 ms lag is employed; the timepoints given on the x-axis above
represent time within the stimulus variable—surprisal values in this time window
have been correlated with neural activity in a time window of 200-950 ms (starting
200 ms after presentation of the stimulus onset).

A Cohortentropy (TTG)
(9]
=]
S
i
T T T T T T T T T T T T T T T T
0 50 150 250 350 450 550 650 750
Time in stimulus (ms)
B Cohortfrequency (TTG)
© -
< -
EE
[CR—
l ~ ]
=
O _]

! T T T T T T T T T T T T T T T T
0 50 150 250 350 450 550 650 750

Time in stimulus (ms)

Fig. 6. Cohort entropy and cohort frequency correlations. See Fig. 5 for details.

effect at the end of the monomorphemic words seems to be due to
the first presentation of the shared string prefix. Finally, the effect
of entropy was positive in the first 250 ms (ranging between
t=2.12 and t=3.02), and became negative from 350 ms through
the end of the word (ranging between t=—2.6 and t= —4.1). The
later negative effect was largely driven by the bimorphemic words.

Finally, we examine the effect of cohort frequency. Visual
inspection suggests that this variable had a facilitatory effect in
both early and late time windows; see Fig. 6B. The early effect of
this variable is similar to the effect of cohort entropy early in the
stimulus. We are unable at this point to distinguish between the
effects of this variable and those of cohort entropy. The late effect
is similar to the surprisal effect observed late in the stimulus, albeit
in the opposite direction. This late effect is to be expected, due to
the fact that typically only a single candidate remains in the cohort
at word end, such that cohort frequency amounts to the frequency
of that candidate. Low frequency words are likely to have high
surprisal because they have higher frequency competitors. This

explains why surprisal and cohort frequency have mirroring
effects at word end.

5. Discussion

This study attempted to address a number of questions, both
theoretical and methodological. On the methodological level, the
study sought to explore the effectiveness of MEG for investigating
the role of morphology in phoneme prediction during auditory
word recognition, as well as the effectiveness of millisecond-by-
millisecond correlation of MEG data with information-theoretic
variables time-locked to phoneme boundaries within stimuli.

Our results suggest positive answers to both of these methodo-
logical questions. Significant and interpretable effects emerged in
the analysis of the neural data, both in the results of the factorial
design and in the results of the millisecond-by-millisecond analy-
sis of continuous stimulus variables. This outcome supports the
viability of these approaches in addressing theoretical questions.
The variables we used to predict neural activity quantify the infor-
mation-theoretic properties of the spoken word recognition task.
Our results are therefore strictly at the computational level, in
the sense of Marr (1982). In future work, our timepoint-by-time-
point correlational analysis could be used to predict brain activity
from particular mechanistic models of speech recognition, such as
TRACE (McClelland & Elman, 1986) or Shortlist B (Norris & McQu-
een, 2008).

On the theoretical level, the study addressed two main ques-
tions. First, based on findings supporting surprisal as a strong pre-
dictor of neural activity during processing of incoming phonemes
in auditory word recognition (Gagnepain et al., 2012), we sought
to investigate whether morphological structure would serve to en-
hance the phoneme prediction process suggested by these results
(Balling & Baayen, 2012). Second, we sought to shed light on the
nature of cohort competition in auditory word recognition—what
effect, if any, would emerge in a millisecond-by-millisecond corre-
lation of cohort entropy with neural activity in and around the
auditory cortex? Would high entropy increase neural activity, as
predicted by the cohort model (Marslen-Wilson, 1987); decrease
neural activity, as predicted by the LEDP model we propose; or
have no effect at all, as suggested by Gagnepain et al. (2012)?

For both categorical and continuous measures of surprisal, sig-
nificant correlations emerged with activity in transverse and supe-
rior temporal gyri, adding to existing evidence in favor of a role of
prediction in auditory word recognition. The direction of this effect
accords with intuition: higher surprisal led to greater neural
activation.

Significant interactions of morphological complexity with both
measures of surprisal furthermore provide support for the hypoth-
esis that morphological structure can enhance the capacity for
phoneme prediction: in both measures, the strong main effect of
surprisal was significantly stronger for bimorphemic words than
for monomorphemic words. This suggests that the presence of
internal structure does strengthen the capacity for prediction of
upcoming phonemes in recognition of spoken words. It should be
noted that this interaction did not emerge in reaction time or accu-
racy data, a discrepancy that suggests that the use of MEG tech-
niques in investigating these questions may indeed reveal effects
not apparent from behavioral results alone, at least in studies with
fewer participants.

For the continuous measure of phoneme-by-phoneme cohort
entropy, a significant facilitatory effect emerged in auditory cortex
at the beginning of the stimulus—a result consistent with the pre-
dictions of LEDP models, on which high entropy leads to delay of
prediction processes and therefore to less neural work. If we accept
as a working hypothesis the idea that prediction is delayed under
conditions of high entropy, this suggests a potential explanation
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for the emergence of our surprisal effect only at the end of the
stimulus: if in recognizing a spoken word, the brain suspends pre-
dictive processes until entropy reduces to a certain level, effects of
error detection may not emerge until later in the stimulus, when
cohort entropy is lower.

A clear main effect emerged for morphological complexity in
both behavioral measures. This result could be due to processing
advantage for complex words relative to simple words (Balling &
Baayen, 2008; Ji et al., 2011), or due to the fact that continuation
surprisal was not matched between monomorphemic and bimor-
phemic stimuli included in the study.

In the reaction time data, there was a significant interaction be-
tween order and morphological complexity, such that bimorphe-
mic words were responded to more quickly when presented
second within their pair, while monomorphemic pair members
were responded to more slowly when presented second. This re-
sult suggests that there was indeed long-distance priming of
shared morphological stems (cf. Kouider & Dupoux, 2009), whereas
inhibition occurred between shared non-morphological string pre-
fixes. This finding lends further support for morphological decom-
position in auditory word recognition. A three-way interaction also
emerged in the behavioral data between morphological complex-
ity, continuation surprisal, and order. We have no ready explana-
tion for why the two-way interaction observed between
morphological complexity and continuation surprisal should
emerge only on first-presentation trials.

The larger effect of prediction in bimorphemic words than in
monomorphemic words shows that when predicting upcoming
segments in complex words, participants use information that goes
beyond the probability distribution of full word forms compatible
with the initial string prefix. This information could only be de-
rived from the stem, which must therefore be accessed before
the end of the word. This argues against full listing models, in
which morphologically complex words are representationally
indistinguishable from monomorphemic words (Butterworth,
1983; Norris & McQueen, 2008), and in favor of models in which
complex words are obligatorily decomposed into their subparts
(Rastle, Davis, & New, 2004; Solomyak & Marantz, 2010; Taft & For-
ster, 1975). Future work should investigate the nature of the addi-
tional information provided by stems such as kill- (as in killing and
killer) but not by meaningless string prefixes such as brb- (in bour-
bon and burble). For instance, participants could be making more
reliable probabilistic predictions for stems with which they have
limited past experience by using the overall frequencies of suffixes
in the language. The prediction of the affix could also be informed
by semantic properties of the stem. For example, stems associated
with properties (nice, long) are much more likely to be followed by
the superlative affix -est than stems associated with actions (kill,
eat). These additional sources of information could be fruitfully
modeled in a realistic generative model of English morphology.

6. Conclusion

Recent work in auditory word recognition has provided evi-
dence for phoneme-level prediction occurring during the process-
ing of a spoken word. Additional work points to an interaction of
these predictive processes with a word’s morphological structure.
Drawing on these two lines of research, we investigated the role
of morphological structure in phoneme prediction, while addition-
ally exploring the precise manner in which the cohort of words
consistent with the input affects the neural processes of auditory
word comprehension. We found that morphological structure does
indeed enhance phoneme prediction, leading to a larger effect of
surprisal in morphologically complex words. We additionally
found that higher cohort entropy leads to decreased neural activity.

The results of this study suggest that MEG is a viable tool for the
investigation of morphological structure and phoneme prediction,
and furthermore that it allows for successful millisecond-by-milli-
second analysis of information-theoretic variables at the single
trial level.
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