Computational Linguistics (LING 28610/38610, CMSC 25610/35610)

Fall 2019

Course Information

Computational Linguistics (LING 28610/38610, CMSC 25610/35610) Times: Tuesday and Thursday 11:00am–12:20pm Location: Oriental Institute 208

Contact Information

Instructor: Allyson Ettinger Office: Rosenwald 229B Email: aettinger@uchicago.edu Office hours: Mon 2:00-3:00pm (or by appointment)

Other information

Course website: https://canvas.uchicago.edu/courses/23821 Prerequisite: Instructor permission. Students should have two courses in linguistics or other cognitive science areas, or equivalent background in relevant topics. Text: There is no textbook for this class. All readings will be provided on Canvas.

Course description: "Computational linguistics" describes a range of research areas that use computational approaches to address scientific and engineering problems pertaining to language. The goal of this course is to give students a foundational understanding of two domains of computational linguistics: cognitive modeling and natural language processing. Cognitive modeling uses computational models to test scientific hypotheses about mechanisms underlying human cognition. Natural language processing designs computational models of language for engineering purposes, in service of advancement of artificial intelligence. In this course we will discuss various types of computational models and their applications within each of these subdomains.

On the technical side, the additional goal of this course is to afford students the basic programming skills and mathematical foundations to be able to implement computational models and conduct research in computational linguistics. This course will thus combine reading and discussion of relevant research with instruction and practice in programming and mathematical foundations.

Expectations and grading procedures:

- 1. **Participation.** This course will combine lecture-style instruction with full-class discussion, so you will be expected to do readings and participate regularly in class discussions.
- 2. Exercises and problem sets. There will be regular programming exercises and problem sets aimed at implementing ideas discussed in class, while also bringing everyone up to speed with programming capabilities. These assignments will use Python.

3. Final project. You will complete a project implementing a computational model to address a scientific or engineering problem, or executing a substantive analysis of an existing computational model. Required components of this project are as follows:

Final project components

Proposal. Due Oct 31. By this time you need to have met with me to discuss your choice of project and obtain approval.

Draft. Due Nov 12. Submit a rough introduction and literature review for your paper. The introduction does not need to state your results (which you may not have in full) but should clearly frame the motivation and intended contribution of the work.

Presentation. In class Nov 26 and Dec 3. You will give a short presentation of your project in class. You should bring a handout and/or use slides. Further guidelines will be announced.

Paper. Due Wednesday Dec 11. Submit online. Further guidelines will be announced.

Grading will be weighted as follows:

Participation: 15% Programming exercises / problem sets: 40% Final project: 45% (Draft, 10%, Presentation 5%, Paper 30%)

Initial course schedule (subject to change!):

Any changes to this schedule will be announced via Canvas.

Date	Topic	Reading	Assignment	
			due	
Intro				
Tuesday 10/1	Course introduction and			
	overview			
Word Learning				
Thursday $10/3$	Modeling word learning dy-	McMurray (2007); Russell	Programming	
	namics; probability intro	& Norvig (2010) Ch. 13	exercise: self	
			intro	
Tuesday 10/8	Bayesian word learning	Xu & Tenenbaum (2007)	Programming	
			exercise: Mc-	
			Murray	
Thursday 10/10	Vector space representations	Turney & Pantel $(2010);$	Programming	
	for words	Landauer & Dumais (1997)	exercise:	
			Bayes	
Machine learning intro (supervised)				
Tuesday 10/15	Classification intro	Course in Machine Learn-	Programming	
		ing Ch. 1; Jurafsky & Mar-	exercise: vec-	
		tin Ch. 4	tor space	
			models	
Thursday 10/17	Neural network intro	Jurafsky & Martin Ch. 7	Programming	
			exercise: clas-	
			sifiers	

Words in context				
Tuesday 10/22	Language modeling, informa-	Jurafsky & Martin Ch. 3	Programming	
	tion theory, and connections		exercise: neu-	
	to psycholinguistics		ral networks	
Thursday $10/24$	Neural network language	Bengio et al. (2003)		
	models			
Bringing in syntax				
Tuesday 10/29	Constituency grammar, pars-	Jurafsky & Martin Ch. 11;	Language	
	ing	Ch. 12	modeling	
	~ ~ ~		problem set	
Thursday 10/31	Syntactic surprisal	Hale (2001)	Deadline to	
			have met to	
			discuss project	
Tuesday 11/5	Noisy channel models and ap-	Levy (2008)		
	plication to processing			
Contextualizing word representations				
Thursday 11/7	ELMo: adding context infor-	Peters et al. (2018)	Psycholing.	
	mation to word representa-		modeling	
	tions		problem set	
Tuesday 11/12	BERT: pushing the state of	Devlin et al. (2018)	Due: draft in-	
	the art with contextualized		tro / literature	
	representations and trans-		review	
	former networks			
Evaluation/analysis				
Thursday 11/14	Neural decoding	Mitchell et al. (2008)		
Tuesday 11/19	Probing tasks	Adi et al. (2016); Conneau		
		et al. (2017) ; Ettinger et al.		
		(2018)		
Thursday 11/21	Biases in datasets	Kaushik & Lipton (2018)	Analysis prob-	
			lem set	
Presentations				
Tuesday 11/26	Project presentations			
Thursday 11/28	Thanksgiving break			
Tuesday 12/3	Project presentations			
Finals				
Wednesday $12/11$			Final paper	
			due	