Computational Linguistics II (LING 28620/38620, CMSC 25620/35620)

Winter 2020

Course Information

Computational Linguistics II (LING 28620/38620, CMSC 25620/35620) Times: Monday and Wednesday 1:30pm-2:50pm Location: Cobb Hall 119

Contact Information

Instructor: Allyson Ettinger Office: Rosenwald 229B Email: aettinger@uchicago.edu Office hours: Tues 2:00-3:00pm, or by appointment

Other information

Course website: https://canvas.uchicago.edu/courses/25738 Prerequisite: Computational Linguistics I (LING 28610/38610, CMSC 25610/35610) Text: There is no textbook for this class. All readings will be provided on Canvas.

Course description: This is the second in a two-course sequence providing an introduction to topics at the intersection of computation and language, oriented toward linguists and cognitive scientists. This quarter we will cover additional topics in cognitive/linguistic modeling and natural language processing (NLP). Our goal in this quarter is for students to leave the course able to implement advanced models and conduct novel research in cognitive/linguistic modeling and NLP.

Expectations and grading procedures:

- 1. **Participation.** This course will combine lecture-style instruction with full-class discussion, so you will be expected to do readings and participate regularly in class discussions.
- 2. Reading discussion posts. You will be required to post on Canvas a minimum of 10 discussion posts commenting on readings for class, in advance of the class session in which the readings are discussed. The posts can be brief (2-3 sentences), and can contain comments, questions, speculation, or other discussion. The 10-post minimum must be met by posts for 10 separate class sessions.
- 3. **Problem sets.** There will be problem sets aimed at implementing ideas discussed in class, with the goal of helping students to reach a level of technical comfort that enables execution of competitive research in computational linguistics. These assignments will use Python.

4. Final project. You will complete a project implementing a computational model to address a scientific or engineering problem, or executing a substantive analysis of an existing computational model. Required components of this project are as follows:

Final project components

Proposal. Due Feb 5. By this time you need to have met with me to discuss your choice of project and obtain approval.

Presentation. In class March 11. You will give a short presentation of your project in class. You should bring a handout and/or use slides. Further guidelines will be announced.

Paper. Due Wednesday March 18. Submit online. Further guidelines will be announced.

Grading will be weighted as follows:

In-class participation: 10%
Reading posts: 10%
Problem sets: 35%
Final project: 45% (Presentation 5%, Paper 40%)

Course schedule

(subject to change—check Canvas for the most updated syllabus and assignments):

Date	Topic	Reading	Assignment	
			due	
Intro				
Monday 1/6	Course introduction and dis-			
	cussion			
Computational cognitive models and the past tense debate				
Wednesday 1/8	Rule-based modeling: ACT-	Anderson et al. (2004)		
	R model			
Monday 1/13	ACT-R on morphology	Taatgen & Anderson (2002)		
Wednesday 1/15	Connectionism intro	Elman et al. (1996)		
Monday 1/20	Martin Luther King, Jr. Day			
	(No class)			
Wednesday 1/22	Connectionism and morphol-	Rumelhart & McClelland		
	ogy	(1986)		
Monday 1/27	Update on the debate	Kirov & Cotterell (2018)		
Composition and sentence-level modeling				
Wednesday 1/29	Designing lexical representa-	Pustejovsky (1991)	Problem Set 1	
	tions for composition		due	
Monday 2/3	Learning word representa-	Fyshe et al. (2015)		
	tions for composition			
Wednesday $2/5$	Learning composition with	Socher et al. (2013)		
	syntax			
Monday 2/10	Learning composition by neu-	Hill et al. (2016)	Deadline to	
	ral models with select objec-		have met to	
	tives		propose final	
			project topic	

Wednesday 2/12	Modeling the N400 with the	Rabovsky et al. (2018)		
	sentence gestalt model			
Discourse-level modeling				
Monday 2/17	Rational Speech Acts model	Frank & Goodman (2012)	Problem Set 2	
			due	
Wednesday 2/19	RSA model in applications	Andreas & Klein (2016),		
		Cohn-Gordon et al. (2018)		
Monday 2/24	Anaphora resolution: rule-	Lappin & Leass (1994)		
	based model			
Wednesday 2/26	Coreference systems: ma-	Ng (2017), Durrett & Klein		
	chine learning	(2013), Lee et al. (2017)		
Monday 3/2	Dialogue act modeling	Stolcke et al. (2000)		
Wednesday 3/4	Chatbots	Zhang et al (2018), Wolf et	Problem Set 3	
		al. (2019)	due	
Wrap-up and presentations				
Monday 3/9	Topic TBD: students' choice			
Wednesday 3/11	Project presentations			
Finals				
Wednesday 3/18			Final paper	
			due	